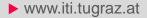


Revision 2


EWSN 2018 Dependability Competition

Logistics Information

Carlo Alberto Boano and Markus Schuß

Institut für Technische Informatik Graz University of Technology, Austria

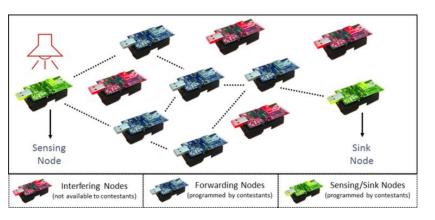
16.12.2017

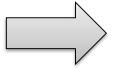
3rd EWSN Dependability Competition

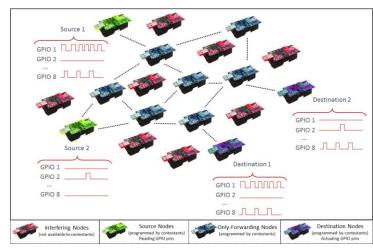
- Following the success of the past two editions, the International Conference on Embedded Wireless Systems and Networks (EWSN) hosts also this year a dependability competition comparing the performance of IoT communication protocols in harsh RF environments
 - 1st edition (2016): Graz, Austria [link]
 - 2nd edition (2017): Uppsala, Sweden [<u>link</u>]
 - 3rd edition (2018): Madrid, Spain [link]

IITI

New Format

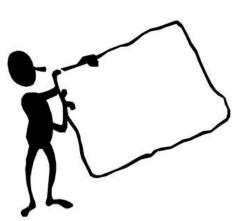

- This year's dependability competition is run remotely over a longer time window
 - The competition organizers have built a testbed facility that is available remotely to all contestants
 - → Contestants can thoroughly test their code on the actual evaluation scenario
 - → Roughly two months time to test a solution before submitting the code used for the final evaluation
 - The testbed facility can be used exclusively for research purposes and for testing the solution submitted to the competition
 - → It is prohibited to upload malware trying to gain unauthorized access to or disrupt any service, data, account or network (see terms and conditions)





New Format

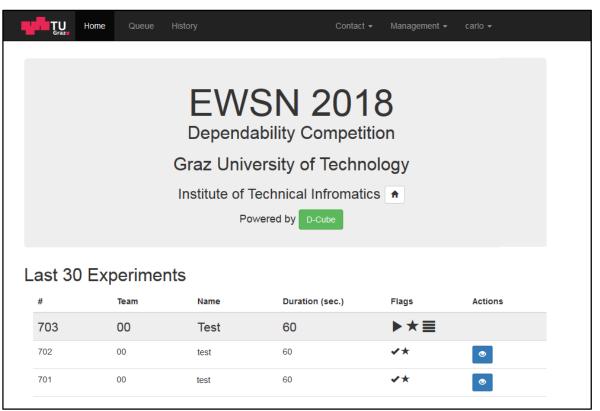
- This year's evaluation scenario includes the reporting of <u>multiple</u> events from/to <u>several</u> nodes
 - The scenario used in the past two editions focused on a single source node monitoring one event and forwarding this information to a single destination node over a multi-hop network
 - In this year's scenario, many source nodes monitor several events and need to forward this information to one or more destinations over a multi-hop network



IITI

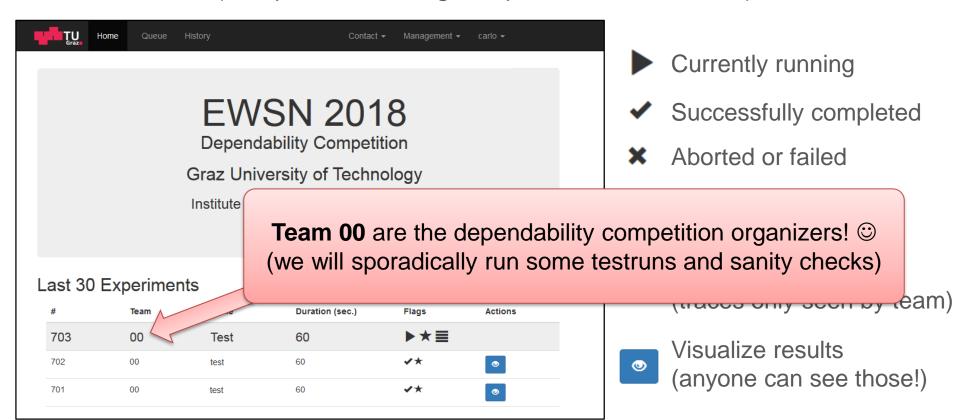
New Format

- Dedicated poster session during the main conference
 - During the first day of the main EWSN conference, the winners of the dependability competition will be awarded
 - The top-three teams will hold a 10-minutes presentation about their solution, followed by a short discussion session
 - In the evening of the first day of the main EWSN conference, there will be a dedicated poster session for all competitors
 - → All competing teams must present their solution in the poster session and will have the possibility to engage in lively discussions with the other conference attendees

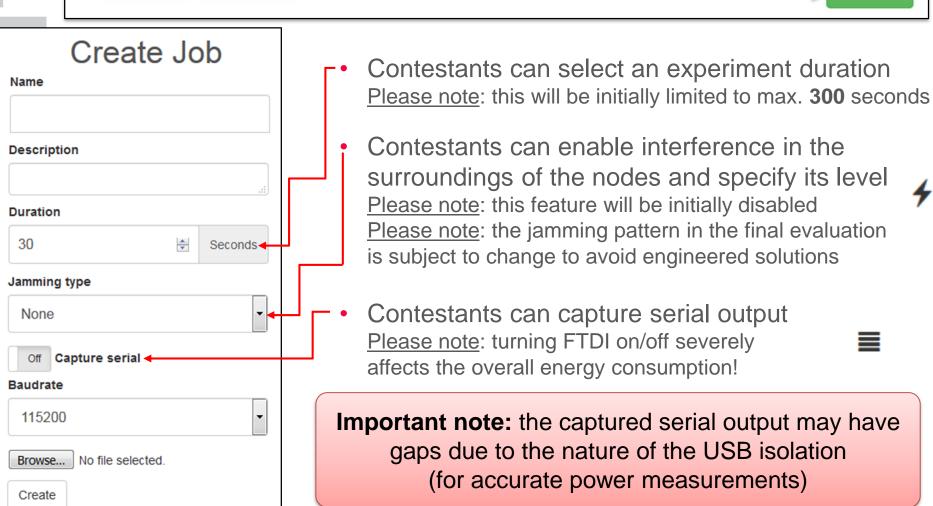


- The testbed facility is available at: https://iti-testbed.tugraz.at/
- Login credentials
 - Each team will receive the login credentials to access the testbed facility via e-mail as soon as:
 - → At least one team member has registered to EWSN 2018
 - → A signed scanned copy of the terms and conditions for the use of the competition's testbed has been sent to the organizers
 - → One username and password shared for the whole team

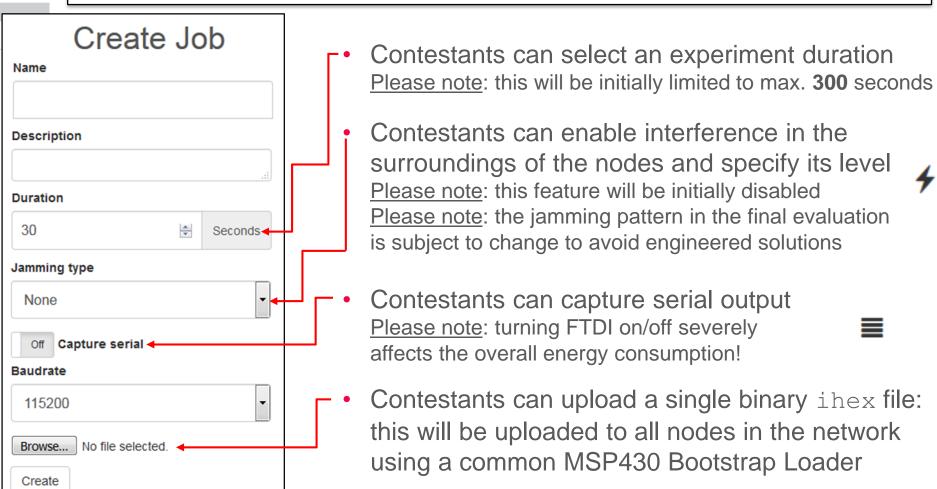
Username	
Password	


- At a glance
 - Home tab shows the list of all experiments of all teams (completed, running, or queued for execution)

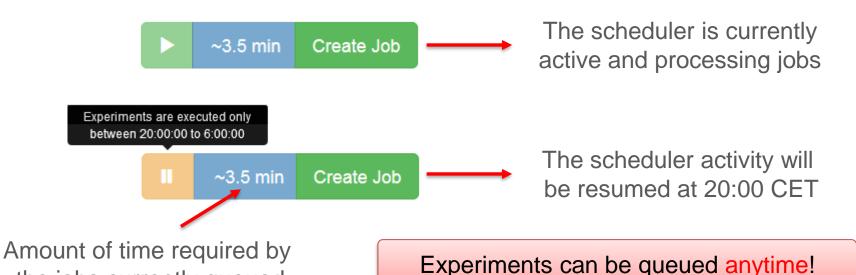
- Currently running
- ✓ Successfully completed
- × Aborted or failed
- ★ Higher priority job (organizers only)
- Log output enabled (traces only seen by team)
- Visualize results (anyone can see those!)


- At a glance
 - Home tab shows the list of all experiments of all teams (completed, running, or queued for execution)

Firmware Upload



Firmware Upload



Testbed's Scheduler

the jobs currently queued

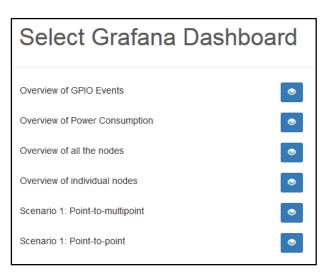
- Jobs execution policy: first come, first served
- Jobs are executed between 7:00 and 17:00 AoE only!
 - Between 20:00 and 6:00 (Central Europe time)
 - Between 4:00 and 14:00 (Tokyo time)
 - Between 4:00 and 13:00 (Bejing time)

Testbed's Scheduler

- Jobs execution policy: first come, first served
- Jobs are executed between 7:00 and 17:00 AoE only!
 - Between 20:00 and 6:00 (Central Europe time)
 - Between 4:00 and 14:00 (Tokyo time)
 - Between 4:00 and 13:00 (Bejing time)

Why this limitation?

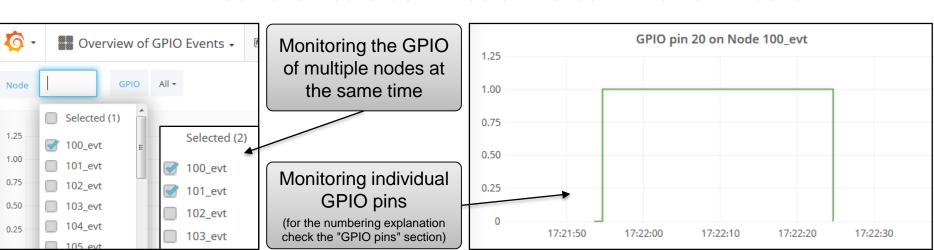
- During the experiments, a harsh RF environment is created by making use of (among others) Raspberry Pi3 nodes to generate a significant amount of Wi-Fi traffic
- When heavy Wi-Fi traffic is generated, the University's Wi-Fi infrastructure is severely affected any can be disrupted
- Therefore, we have agreed with TU Graz to carry out experiments only outside the official working hours



Results of an Experiment

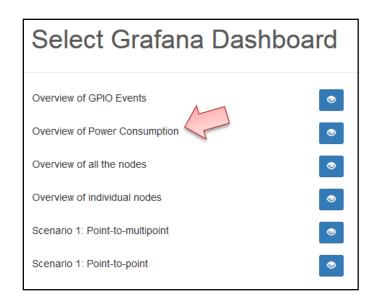
After the execution of an experiment, graphical results can be checked by anyone by clicking on the blue button on the right side

- Results displayed using Grafana
- Power consumption and GPIO status is tracked for each node
- Additional features will be activated in the next weeks
- The team owning a job can also see the program log



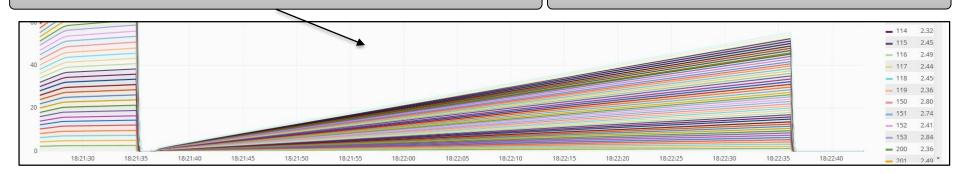
Results of an Experiment

- Grafana dashboards
 - Overview of GPIO events
 - Overview of power consumption
 - Overview of all the nodes
 - Overview of individual nodes
 - Scenario 1: Point-to-multipoint
 - Scenario 1: Point-to-point
 - Additional features will be activated in the next weeks



Results of an Experiment

- Grafana dashboards
 - Overview of GPIO events
 - Overview of power consumption
 - Overview of all the nodes
 - Overview of individual nodes
 - Scenario 1: Point-to-multipoint
 - Scenario 1: Point-to-point
 - Additional features will be activated in the next weeks.



Stacked energy consumption:

Shows the total energy consumed by all nodes in the testbed

Experiment state:

Shows if a sensor node is active (1) or not (0)

Results of an Experiment

- Grafana dashboards
 - Overview of GPIO events
 - Overview of power consumption
 - Overview of all the nodes
 - Overview of individual nodes
 - Scenario 1: Point-to-multipoint
 - Scenario 1: Point-to-point
 - Additional features will be activated in the next weeks.

Individual statistics on voltage, current, power, and cumulative energy for each node in the network

Node status information (serves as a sanity check for contestants and organizers)

The value is computed as follows:

See "GPIO pins" section for details

```
Select Grafana Dashboard

Overview of GPIO Events

Overview of Power Consumption

Overview of all the nodes

Overview of individual nodes

Scenario 1: Point-to-multipoint

Scenario 1: Point-to-point
```


Results of an Experiment

- Grafana dashboards
 - Overview of GPIO events
 - Overview of power consumption
 - Overview of all the nodes
 - Overview of individual nodes
 - Scenario 1: Point-to-multipoint
 - Scenario 1: Point-to-point
 - Additional features will be activated in the next weeks.

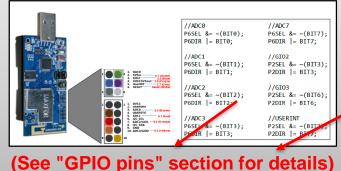
Select Grafana Dashboard

Overview of GPIO Events

Overview of Power Consumption

Overview of all the nodes

Overview of individual nodes

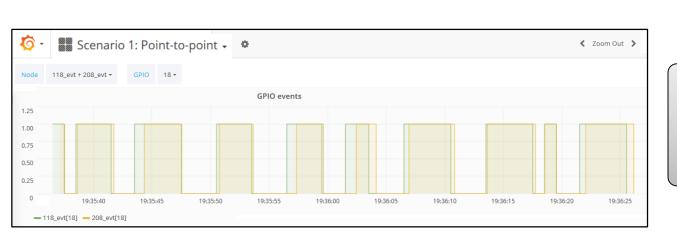

Scenario 1: Point-to-multipoint

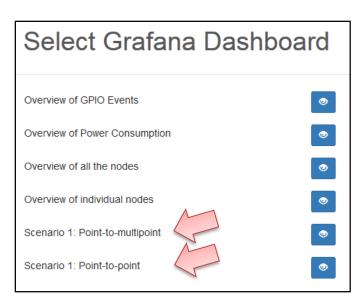
Scenario 1: Point-to-point

GPIO pins (Information is encoded in a special way – for individual values, use "Overview of GPIO events")

The value is computed as follows:

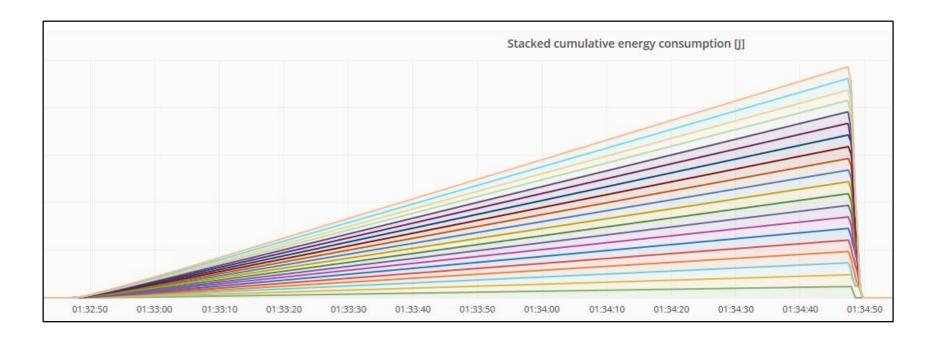
```
apio=0;
apio=apioRead(17);
apio=(apio<<1) |</pre>
                     gpioRead(4);
gpio=(gpio<<1)</pre>
                     gpioRead(18);
gpio=(gpio<<1)</pre>
                     gpioRead(27);
gpio=(gpio<<1)</pre>
                     gpioRead(22);
gpio=(gpio<<1)</pre>
                     gpioRead(23);
apio=(apio<<1)</pre>
                     gpioRead(24);
gpio=(gpio<<1)</pre>
                     gpioRead(25);
```





Results of an Experiment

- Grafana dashboards
 - Overview of GPIO events
 - Overview of power consumption
 - Overview of all the nodes
 - Overview of individual nodes
 - Scenario 1: Point-to-multipoint
 - Scenario 1: Point-to-point
 - Additional features will be activated in the next weeks

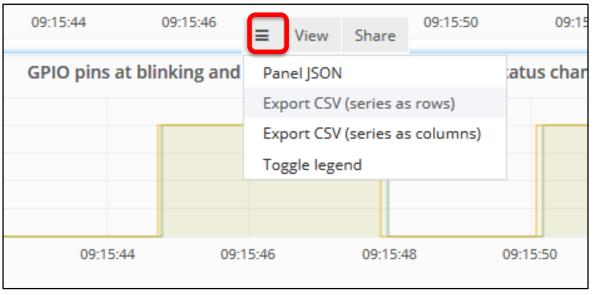


Plots specific to the current evalation scenario (see "Evaluation Scenario scetion" of these slides)

Visualization in Grafana – FAQ

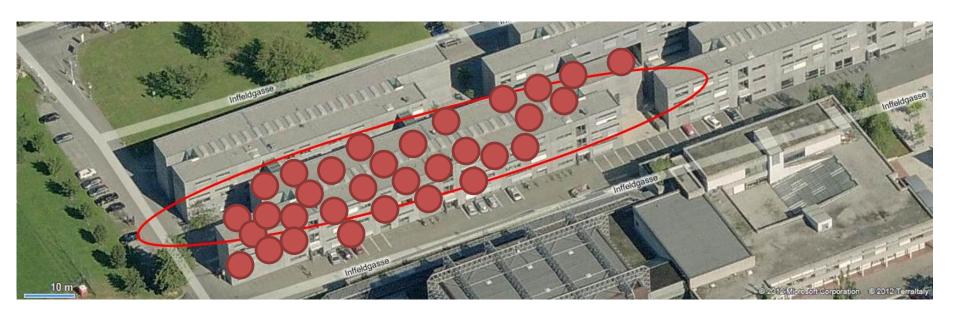
- What is the meaning of the "Stacked cumulative energy consumption" plot?
 - The plots shows the consumption in Joules of each TelosB node
 - → Note that the consumption of the whole sensor node is measured (this includes USB circuitry, DC-DC converter, ...)

Visualization in Grafana – FAQ


- Why is Grafana not displaying any point when I zoom in?
 - Grafana uses second resolution for the zoom
 - When zooming too much, the averaging may lead to a situation in which Grafana uses the same timestamp as startpoint and endpoint and cannot hence visualize a line

Visualization in Grafana – FAQ

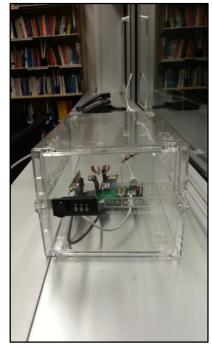
- Can we export the data seen in Grafana?
 - Yes, CSV files can be exported by clicking on the title of the plot
 - Click on the menu icon and select "Export CSV"


4	Α	В	С	
1	Time	1	2	
2	2017-02-16T09:43:46.876Z	0.0840805771962	0.1951102	
3	2017-02-16T09:43:47.501Z	0.152616695366	0.2566677	1
4	2017-02-16T09:43:48.126Z	0.221115444991	0.2613602	
5	2017-02-16T09:43:48.751Z	0.289725498238	0.2663699	(
6	2017-02-16T09:43:49.376Z	0.336447792086	0.2709752	(

\square	Α	В	С
1	Series	Time	Value
2	Sink node	2017-02-16T09:49:06.669Z	1
3	Sink node	2017-02-16T09:49:08.868Z	0
4	Sink node	2017-02-16T09:49:13.570Z	1
5	Sink node	2017-02-16T09:49:16.571Z	0
6	Sink node	2017-02-16T09:49:25.068Z	1
7	Sink node	2017-02-16T09:49:28.674Z	0

Testbed Location

- Nodes are deployed in Inffeldgasse 16 (Graz, Austria)
 - University offices, seminar rooms, and laboratories (belonging to the Institute for Technical Informatics of TU Graz)
 - 51 testbed nodes currently active over multiple floors
 - Density of nodes varies across the building

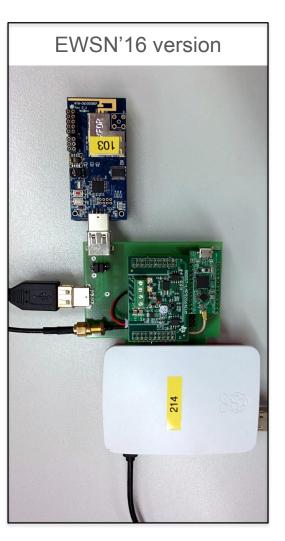


Testbed Location

- Nodes are deployed in Inffeldgasse 16 (Graz, Austria)
 - University offices, seminar rooms, and laboratories (belonging to the Institute for Technical Informatics of TU Graz)
 - 51 testbed nodes currently active over multiple floors
 - Density of nodes varies across the building

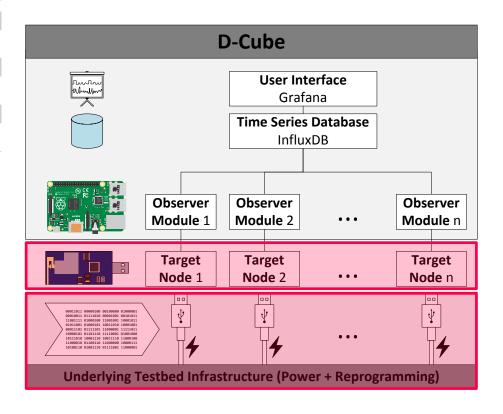
Testbed Hardware

- The testbed allows contestants to program several Maxfor/Advanticsys MTM-CM5000-MSP nodes (replicas of TelosB/Tmote Sky nodes)
 - With and without SMA antenna
 - All powered via USB
 - 10 kB of RAM
 - Attached to D-Cube

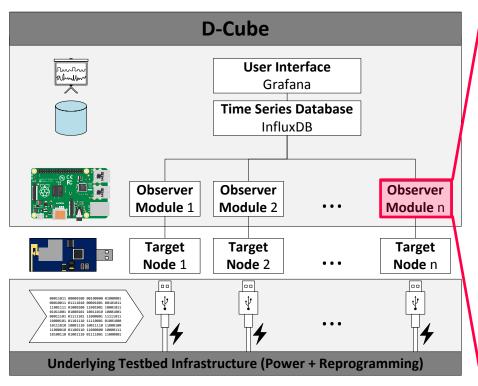


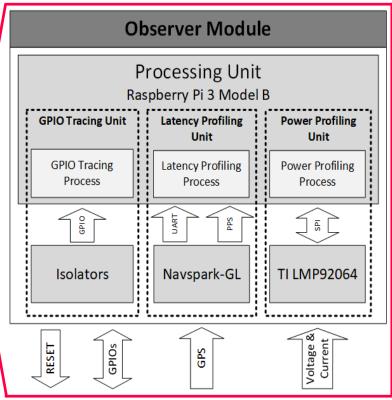
Testbed Hardware: D-Cube

More info: http://iti.tugraz.at/d-cube



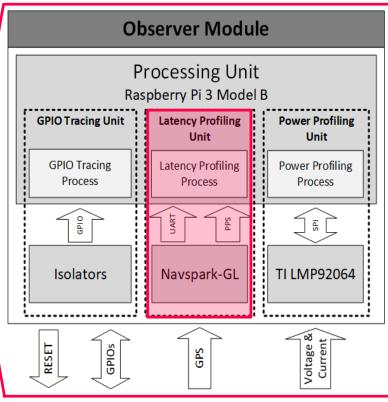
Testbed Hardware: D-Cube


- Target nodes
 - → Devices running the code/system under test
 - → D-Cube agnostic to HW platform chosen as target
 - → MTM-CM5000-MSP nodes (TelosB replicas 10 kB RAM)



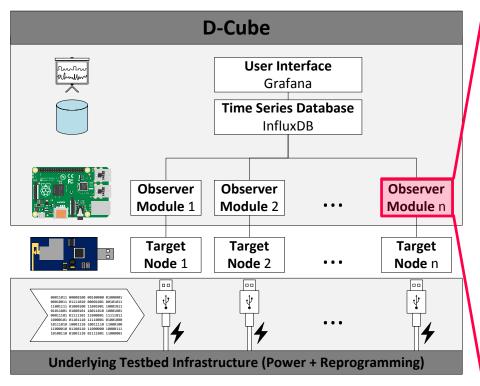
- Underlying infrastructure
 - → Power + reprogramming of the target nodes
 - → Allows to disable the UART interface

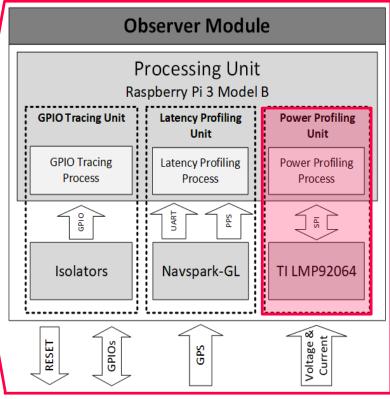
Testbed Hardware: D-Cube



- Observer modules
 - → Each module monitors exactly one target node
 - → Raspberry Pi 3 + custom-made add-on card (ADC+GPS)

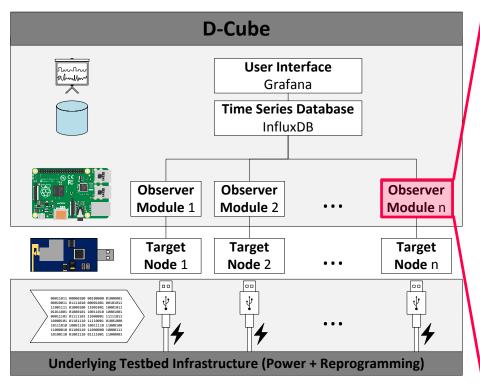
Testbed Hardware: D-Cube

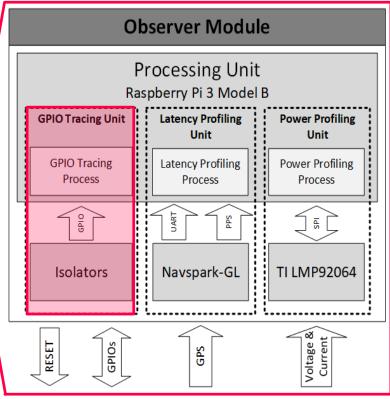

- Observers: latency profiling
 - → GPS module to synchronize system clock
 (NavSpark-GL: Arduino DevBoard with GPS/GLONASS)
 http://navspark.mybigcommerce.com/navspark-gl-arduino-compatible-development-board-with-gps-glonass/



→ Ensures accurate time measurements across the nodes in the testbed

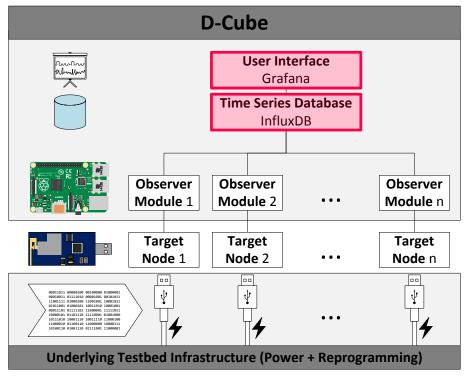
Testbed Hardware: D-Cube





- Observers: power profiling
 - → Simultaneous sampling ADC (TI LMP92064) read via SPI @ 62.5 kHz using a real-time process
 - Voltage channel: up to 10.82V with 2.82mV resolution
 - ❖ Current channel: up to 150.59mA with 39.22µA resolution

Testbed Hardware: D-Cube



- Observers: GPIO profiling
 - → GPIO changes are monitored using the same real-time process sampling the ADC
 - → System clock accuracy is ensured by the GPS module (NTP for nodes where GPS is unavailable)

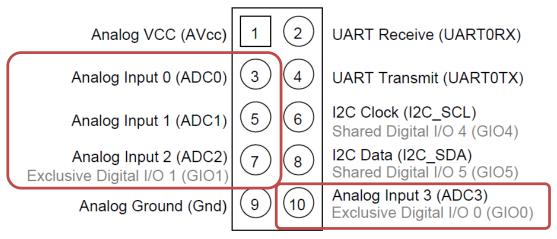
Testbed Hardware: D-Cube

Time Series database

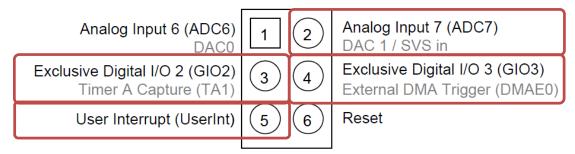
- Collects and persistently stores the data from all observers
- → InfluxDB (open-source)
- Nanosecond precision timestamps

User Interface

- → Acts as proxy to the database and gives real-time feedback
- → Grafana (open-source)



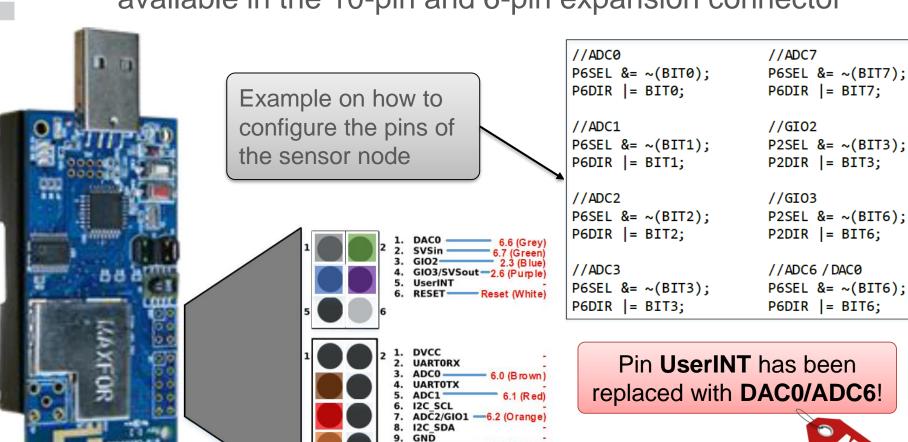
GPIO Pins



GPIO Pins

 The testbed facility is connected to eight of the pins available in the 10-pin and 6-pin expansion connector

10-pin expansion connector (U2)



6-pin expansion connector (U28)

GPIO Pins

 The testbed facility is connected to eight of the pins available in the 10-pin and 6-pin expansion connector

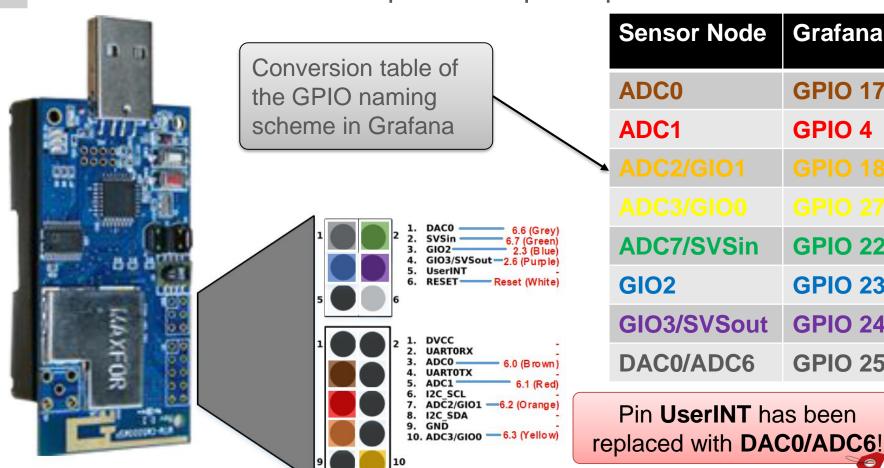
10. ADC3/GIO0 - 6.3 (Yellow)

Grafana

GPIO 17

GPIO 4

GPIO 22

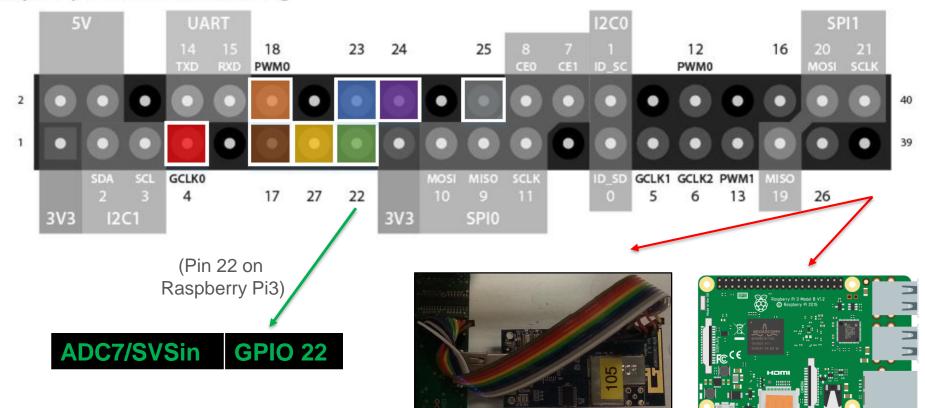

GPIO 23

GPIO 24

GPIO 25

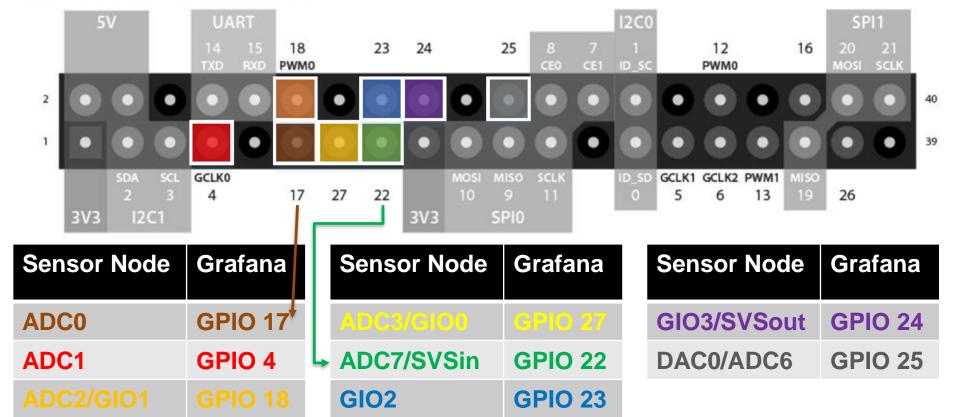
GPIO Pins

The testbed facility is connected to eight of the pins available in the 10-pin and 6-pin expansion connector



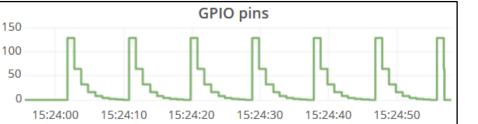
Numbering of GPIO Pins in Grafana

 The GPIO numbers in Grafana correspond to the GPIO pin number to which the sensor node testbed is attached on D-Cube's Observer (Raspberry Pi3)


Raspberry Pi GPIO BCM numbering

Numbering of GPIO Pins in Grafana

 The GPIO numbers in Grafana correspond to the GPIO pin number to which the sensor node testbed is attached on D-Cube's Observer (Raspberry Pi3)



"GPIO Pins" Tab in Grafana

- In the "Overview of individual nodes" tab, the displayed "GPIO pins" numbers in Grafana is derived with the following mapping:
- Example: "GPIO pins" value of 18
 - 18 = 0001 0010 in binary
 - Using Grafana's mapping:
 - ADC0=0; ADC1=0; ADC2=0; ADC3=1
 - SVSin=0; GIO2=0;
 GIO3=1; ADC6=0

```
gpio=0;
gpio=gpioRead(17);
gpio=(gpio<<1) |</pre>
                   gpioRead(4);
gpio=(gpio<<1)
                   gpioRead(18);
gpio=(gpio<<1) |</pre>
                   gpioRead(27);
gpio=(gpio<<1) |</pre>
                   gpioRead(22);
gpio=(gpio<<1) |</pre>
                   gpioRead(23);
gpio=(gpio<<1)</pre>
                   gpioRead(24);
gpio=(gpio<<1)</pre>
                   gpioRead(25);
     Mapping in Grafana
```


GPIO Pins: Frequently Asked Questions

- How often do GPIO pins change?
 - Changes in the GPIOs of a source node can happen anytime
 - The minimum time between changes in the same GPIO pin of a source node is one second

Node Types & Identities

Node Identities

- Node address of all nodes is known beforehand
 - Provided text file in the blog:
 List of node addresses.txt
 - The file contains: Node ID in flash, FTDI Serial ID, DS2411 ID
- Node ID in flash
 - 16-bit unsigned short value (e.g., 100, 101)
 stored by Contiki in the 1 MB external flash → Contiki example
- DS2411 ID
 - Provided by the on-board DS2411 chip
 - Important: Contiki changes the ds2411_id byte 0 such that it is not an odd number, e.g.,

 $119 \rightarrow 00:12:75:00:13:b7:71:6d \rightarrow 00:12.74:00:13:b7:71:6d$

The node list may be updated during the next weeks depending on failures and/or testbed updates!

Node Type: Frequently Asked Questions

- How many source and destinations nodes there will be in the network?
 - There will not be more than 60 nodes (currently 51 deployed)
 - There will not be more than 32 source/destination nodes (e.g., 20 sources, 12 destinations): the remaining nodes will be only-forwarding nodes
 - Each source node monitors up to 8 events (i.e., up to 8 GPIOs) in parallel
 - Each destination node reports up to 8 events (i.e., up to 8 GPIOs) in parallel

Tentative Agenda

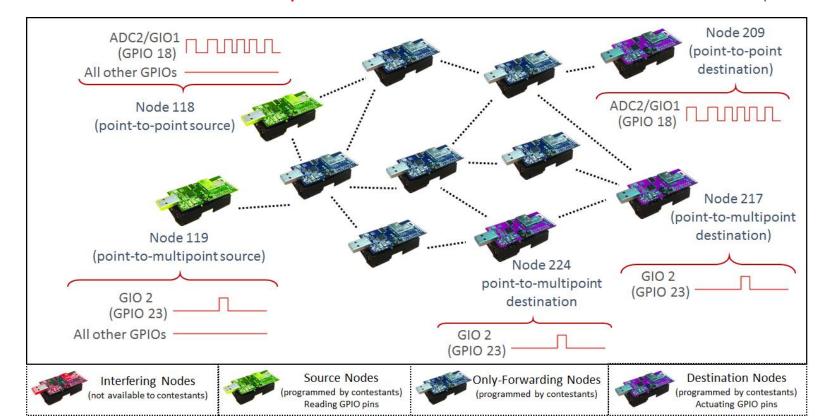
Tentative Agenda

- 1. First preparation phase: Testing of infrastructure 29.11.2017 - 14.12.2017
 - → Simplified scenario
 - → No harsh RF environment
- 2. Second preparation phase: Introducing jamming 15.12.2017 - 07.01.2018
 - → A more advanced scenario added (details follow)
 - → Harsh RF environment can be generated ★

- 3. Third preparation phase: Large-scale tests 08.01.2018 - 29.01.2018
 - → Large-scale scenario with harsh RF environment

Tentative Agenda

- Evaluation phase (30.01.2018 – 09.02.2018)
 - Submission of final software:
 January 29, 2018 at 23:59 (AoE)
 - → One single .ihex file per competing team
 - The code of each team will be run several times by the organizers during the evaluation phase
 - → Large-scale scenario
 - → Harsh RF environmental conditions varying over time
- EWSN Conference in Madrid (15.02.2018)
 - Afternoon: Competition awards & winners' presentations
 - Evening: poster session (one poster / team)



Evaluation Scenarios

1st Preparation Phase

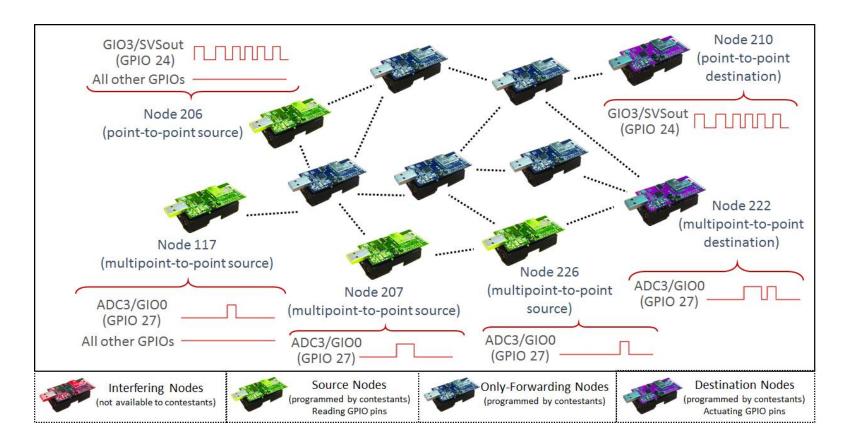
- To get the contestants acquainted with the testbed facility, a simple evaluation scenario is initially available
 - Point-to-point communication from node 118 to 209 (GPIO18)
 - Point-to-multipoint communication from 119 to 217 & 224 (GPIO23)

Grafana Visualization of Eval. Scenarios

 Specific "Scenario" tabs available on the Grafana Dashboard

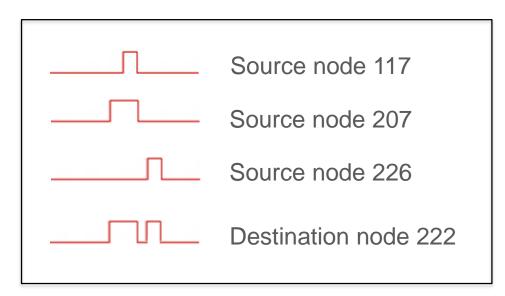
49

 Showing if the GPIO of the nodes employed on a specific scenario have been toggled correctly



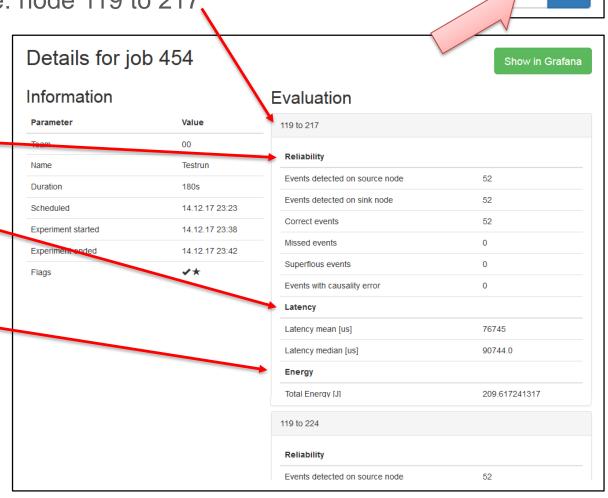
Additional scenarios will be added regularly over time

2nd Preparation Phase


- Two additional scenarios are available
 - Point-to-point communication from node 206 to 210 (GPIO24)
 - Multipoint-to-point communication from nodes 117 & 207 & 226 to 222 (GPIO27)

2nd Preparation Phase New

- Two additional scenarios are available
 - Point-to-point communication from node 206 to 210 (GPIO24)
 - Multipoint-to-point communication from nodes 117 & 207 & 226 to 222 (GPIO27)
 - → Node 222 ORs the information obtained by the three source nodes on GPIO27 (ADC3/GIO0 pin)


Actions

Evaluation of Experiments

- Available for the first set of scenarios
 - Example: node 119 to 217

- Evaluation of reliability (# of events detected)
- Evaluation of latency (mean & median)
- Evaluation of energy consumption
 (∑ of all nodes in Joule)

The evaluation for the other scenarios will be added in the next days!

Evaluation of Experiments

- Reliability (# of events detected)
 - What are superfluous events?

Extra events reported by the destination node

	Reliability	
	Events detected on source node	52
	Events detected on sink node	52
	Correct events	52
	Missed events	0
	Superflous events	0
	Events with causality error	0

Evaluation of Experiments

Reliability (# of events detected)

What are missed events?

Cases in which the destination did not report a pin change in the source before the next pin change actually occurred

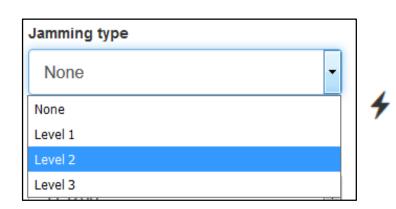
	Reliability	
	Events detected on source node	52
	Events detected on sink node	52
	Correct events	52
	Missed events	0
	Superflous events	0
	Events with causality error	0

Evaluation of Experiments

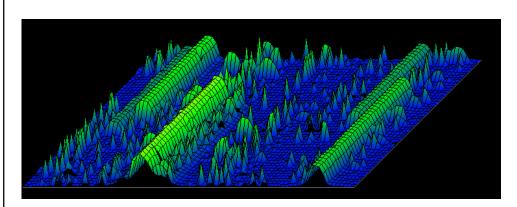
- Reliability (# of events detected)
 - What are events with a causality error?

Cases in which the destination reported a pin change at the source before it has actually happened

F	Reliability	
Е	Events detected on source node	52
Е	Events detected on sink node	52
(Correct events	52
N	Missed events	0
5	Superflous events	0
E	Events with causality error	0



Challenging RF Environment



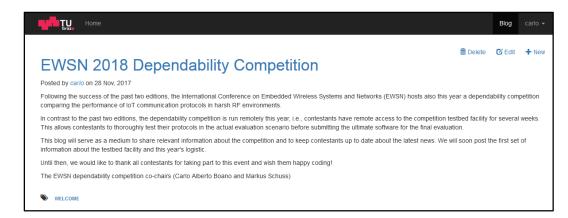
- The testbed infrastructure provides the ability to create a challenging RF environment on specific experiments
 - Contestants can select the rate at which Raspberry Pi3 nodes generate Wi-Fi traffic

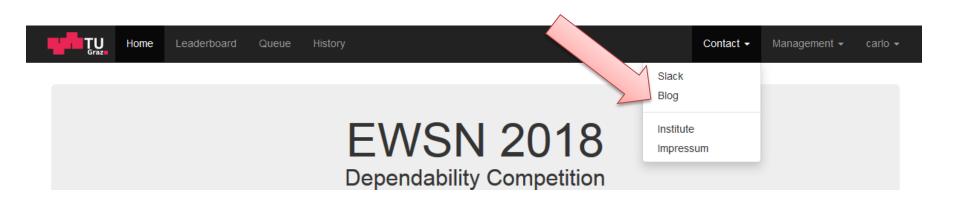
<u>Please note</u>: the jamming pattern is probabilistic in order to avoid engineered solutions

Jamming Type 1: 41 only on a single frequency Jamming Type 2: on multiple frequencies (mild) Jamming Type 3: **4**₃ on multiple frequencies (stronger)

Limitations on Frequency Usage

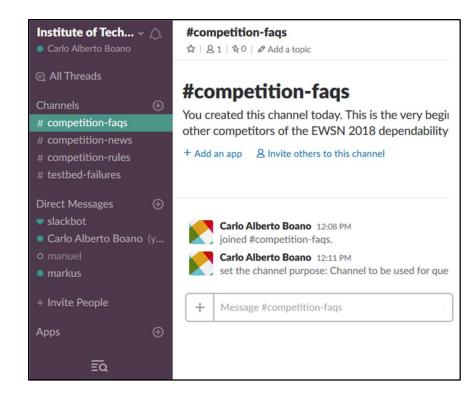
- The TI CC2420 radio allows to send and receive packets also outside the 2.4 GHz band (roughly between 2230 MHz and 2730 MHz)
 - No limitation about the usage of frequencies between 2400 and 2483.5 MHz
 - → You can use any IEEE 802.15.4 channel (11 to 26)
 - The use of frequencies below 2400 and above 2483.5 MHz is strictly forbidden!
 - → Any detected violation will lead to a disqualification

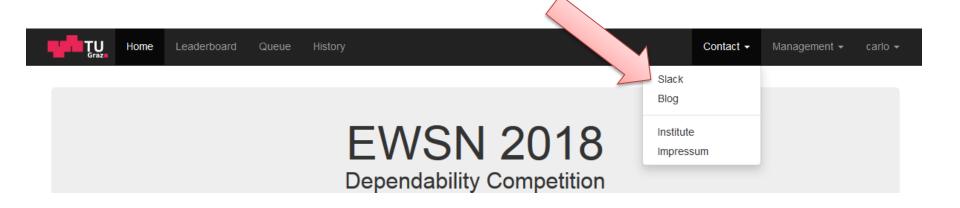



Communication with Organizers

Official Blog

- The organizers have created a blog to keep contestants up to date about the logistics and any important news
 - Please check it regularly!
 - Answers to FAQs will be posted here





Slack Group

- The organizers have also created a slack group to let contestants easily post questions and interact with the organizers as well as with the other teams
- To join slack, click <u>here</u>

Contacts

- Carlo Alberto Boano
 - E-mail: <u>cboano@tugraz.at</u>
 - Tel.: +43 316 873 6413

- E-mail: <u>markus.schuss@tugraz.at</u>
- Tel.: +43 316 873 6403

