
u www.iti.tugraz.at

Carlo Alberto Boano and Markus Schuß
Institut für Technische Informatik

Graz University of Technology, Austria

EWSN 2019
Dependability Competition

Logistics Information, rev. 1

01.10.2018

1

4rd EWSN Dependability Competition2

 Following the success of the past three editions, the

International Conference on Embedded Wireless Systems

and Networks (EWSN) hosts also this year a dependability

competition comparing the performance of IoT

communication protocols in harsh RF environments

 1st edition (2016): Graz, Austria [link]

 2nd edition (2017): Uppsala, Sweden [link]

 3rd edition (2018): Madrid, Spain [link]

 4th edition (2019): Beijing, China [link]

http://ewsn2016.tugraz.at/cms/index.php?id=49.html
http://www.ewsn2017.org/dependability-competition1.html
https://ewsn2018.networks.imdea.org/call-for-competitors.html
http://ewsn2019.thss.tsinghua.edu.cn/call-for-competitors.html

Format of 2019 Edition3

 Remote preparation phase

• As for the 2018 edition, a testbed facility will be available to all contestants

• Steps necessary to obtain access to the testbed facility

1. Competing teams accept the "terms and conditions" for the

use of the testbed facility (see competition’s blog for more info)

→ Team members agree to use the testbed facility exclusively for research

purposes, and not to gain access to or disrupt any service or network

→ A signed copy of the terms and conditions is sent to the organizers

2. At least one member of each competing team registers to EWSN’19
(http://ewsn2019.thss.tsinghua.edu.cn/registration-info.html)

3. A single username and password is provided to all team members

• Roughly two months preparation time before submitting the binary
ihex file(s) to be used for the final evaluation

→ Teams may still withdraw from the competition before the final evaluation
(but the competition abstract will not be published in the EWSN proceedings)

http://ewsn2019.thss.tsinghua.edu.cn/registration-info.html

Format of 2019 Edition4

 Evaluation phase

• The binary file(s) provided at the end of the preparation phase will be used

to extensively benchmark the performance of the competing solutions

→ Only one binary file per category for each team!

→ The evaluation phase will be run using settings similar

to the ones provided during the preparation phase

 Submission of camera-ready abstracts

• Each team participating to the final evaluation can publish

a two-page competition abstract in the EWSN proceedings

→ The abstract must include (i) a description of the competing solution, as well as

(ii) preliminary results and lessons learned from the preparation phase

→ Competition abstracts will appear in the ACM Digital Library

→ The camera-ready deadline for the competition abstracts

follows the same deadline of EWSN poster abstracts

(expected deadline: December 31, 2018)

Format of 2019 Edition5

 EWSN’19 in Beijing

• As for last year’s edition, a poster session

dedicated to the dependability competition will

take place during the main EWSN conference

→ All teams participating in the final evaluation must

present their solution in the poster session and will

have the possibility to engage in lively discussions

with the other conference attendees

• The winners of each competition's category will

be awarded in a dedicated plenary session

during the main conference

→ After receiving the award, the winning teams must

hold a plenary short presentation about their

solution, followed by a discussion session

Winners of 2018 edition

Format of 2019 Edition6

 Two competition categories

• Category 1: Data collection for condition monitoring

→ Up to eight source nodes communicating to a single destination node over a

multi-hop network (i.e., multipoint-to-point traffic)

• Category 2: Dissemination of actuation commands

→ Up to eight source nodes disseminating actuation commands to a specific set

of destinations nodes in the network (i.e., point-to-multipoint traffic)

→ Each source node is associated to at most eight destinations

→ A destination node can receive messages from only a single source node

→ A destination node cannot act as a source node at the same time

 Several testbeds layouts

• For each category, different testbed layouts will be available

(i.e., different configurations / sets of source and destination nodes)

→ During the first days of the preparation phase, only one layout will be available

→ Additional layouts will be added in the following weeks

Format of 2019 Edition7

 Competition scenario

• Same hardware used in the previous editions

→ Advanticsys MTM-5000-MSP sensor nodes (TelosB replicas)

→ This allows contestants to test their protocol on other public testbeds as well

• Use of different input parameters

→ The address of source and destination nodes, the amount of data to be

transmitted, and the traffic load are no longer hardcoded this year

→ To this end, the competition infrastructure will directly inject input parameters
into the firmware under test by applying patches to the provided ihex binary

→ Detailed information and code examples follow on later slides

• Data to be exchanged

→ Raw sensor values of different length

→ The length will be the same for all nodes involved in

a given experiment and will be known beforehand

→ Detailed information and code examples follow on later slides

Format of 2019 Edition8

 Competition scenario

• Sending and receiving data

→ Nodes are connected using software I2C to an EEPROM

→ The testbed signals to each source node the availability of new data to be

transmitted in the EEPROM by toggling a pre-defined GPIO pin

→ Once receiving a message, each destination node needs to write this data to

the EEPROM and toggle a pre-defined GPIO pin accordingly

→ Detailed information and code examples follow on later slides

• RF interference

→ Competing solutions will be tested both in the absence and in the

presence of RF interference across the whole 2.4 GHz ISM band

→ No IEEE 802.15.4 channel(s) are guaranteed to be constantly interference-free

• Frequency usage

→ Using frequencies below 2400 and above 2483.5 MHz is strictly forbidden

(TI CC2420 radio allows operation between 2230 MHz and 2730 MHz)

→ No limitation about the usage of frequencies between 2400 and 2483.5 MHz

→ Frequency usage will be monitored during the evaluation phase:

any detected violation will lead to a disqualification

9

Preparing your

Firmware

Binary Patching10

 One of the main changes of this year’s edition is the

ability of the competition’s testbed to directly inject a

number of input parameters into the firmware under test

• More information available on our CPSBench paper

 The testbed injects the following input parameters:

• Traffic pattern (e.g., point-to-point traffic, multipoint-to-point traffic, …)

• Node addresses of source and destination nodes

• Traffic load

→ Message length and location within the EEPROM

→ Periodicity of messages (e.g., periodic, aperiodic, …)

Note that you can disable binary patching when

queueing your experiment for testing purposes

http://www.carloalbertoboano.com/documents/schuss18benchmark.pdf

Binary Patching11

 Contestants need to use a pre-defined configuration struct

• Provided in the testbed.h helper file

 An example on how this pre-defined configuration struct can

be used is available on the competition’s blog

• Link: https://iti-testbed.tugraz.at/static/upload/competition_example_2019.zip

 This example contains:

• testbed.h → Helper file containing the configuration struct and

some helper functions to print the values injected by the testbed

• my2c.h / my2c.c → Example implementation of the software I2C

that can be used to read and write data to EEPROM

• Makefile → Contains an example of how to configure the MSP430

linker’s LDFLAGS correctly in the for binary patching

https://iti-testbed.tugraz.at/static/upload/competition_example_2019.zip

Binary Patching12

 Contestants need to use a pre-defined configuration struct

• Provided in the testbed.h helper file

 An example on how this pre-defined configuration struct can

be used is available on the competition’s blog

• Link: https://iti-testbed.tugraz.at/static/upload/competition_example_2019.zip

 This example contains:

• i2c-test.c → Example application carrying out point-to-point

communication between two nodes using Contiki’s Rime stack

and also showing:

→ How to print values passed by the testbed (print_testbed_config)

→ Read and write data to EEPROM using software I2C

→ Configure the GPIO pins and an interrupt service routine

https://iti-testbed.tugraz.at/static/upload/competition_example_2019.zip

 Your firmware application needs to include a provided
header file (testbed.h), which contains a well-known

definition of the application’s input parameters

 In order for the patching to work, these application input

parameters need to be linked into a well-known address
(0xd400) via the Makefile

Binary Patching13

 Your firmware application needs to contain an instance of
the config_t structure (cfg in the example below)

• cfg enables the testbed to change several settings such

as traffic pattern and traffic load before execution

• This avoids hardcoded values in your firmware

Binary Patching

Ensures the compiler does not remove or “optimize” the variable

The config_t type is defined in testbed.h

The attribute tells the MSP430 GCC to put the variable
into a new section called testbedConfigSection in

the resulting elf file (project_name.sky in Contiki)

14

 The config_t structure contains an array of different

application input parameters (pattern_t struct)

 The pattern_t struct contains information about

the traffic pattern and load:
• Traffic pattern: traffic_pattern, source_id[], destination_id[]

• Traffic load: msg_length, msg_offsetH, msg_offsetL,

periodicity, aperiodic_upper_bound,

aperiodic_lower_bound

Input Parameters provided by the Testbed15

 traffic_pattern embeds info about the traffic pattern

• Point-to-point (1), point-to-multipoint (2), multipoint-to-point (3),

and multipoint-to-multipoint (4)

• traffic_pattern is 0 if unused

Input Parameters provided by the Testbed16

During the EWSN 2019 competition, only the following patterns will be used:
traffic_pattern=3 (category 1)

traffic_pattern=2 (category 2)

traffic_pattern=0 (category 1 & 2) – when unused, see example on a later slide

 source_id[TB_NUMNODES] & destination_id[TB_NUMNODES]

• Embed info about the address of source and destination nodes

• Each node is identified with an 8-bit unsigned short address

→ 8-bit unsigned short value (e.g., 100, 103, 200, …)

Input Parameters provided by the Testbed17

TB_NUMNODES=8

 source_id[TB_NUMNODES] & destination_id[TB_NUMNODES]

• Embed info about the address of source and destination nodes

• Each node is identified with an 8-bit unsigned short address

→ 8-bit unsigned short value (e.g., 100, 103, 200, …)

→ Node ID is stored in flash

→ We are reusing Contiki’s Rime address stored in the 1 MB external flash

→ Code example on how to read the node ID:
https://iti-testbed.tugraz.at/static/upload/nodeid_from_flash.zip

Input Parameters provided by the Testbed18

Note that making use of the on-board DS2411 chip may lead to problems, as faulty nodes may be replaced

during the competition (i.e., their DS2411 ID would change, whilst the node ID stored in flash would not)

Please inform us if you notice inconsistencies

in the node IDs! (in principle, any team could

accidentally overwrite the node ID in flash)

https://iti-testbed.tugraz.at/static/upload/nodeid_from_flash.zip

 traffic_pattern

• 0: indicates that this pattern is unused and can be ignored

• 1: only the source_id[0] and destination_id[0] are used

• 2: only the source_id[0] and all destination_id[x]!=0 are used

(x = 0 … TB_NUMNODES-1)

• 3: all destination_id[x]!=0 and the source_id[0] are used

• 4: all source_id[x]!=0 and destination_id[x]!=0 are used

Input Parameters provided by the Testbed19

During the EWSN 2019 competition, traffic_pattern=1 and traffic_pattern=4 will not be used

Input Parameters provided by the Testbed20

 msg_length

• Number of bytes to be written and read from EEPROM

(whenever an a falling edge occurs, see later slides)

• Messages will be at most 64 bytes

Input Parameters provided by the Testbed21

 msg_offsetH / msg_offsetL

• The high and low byte of the offset address in the EEPROM
• 0x50 is the 7-bit device address of EEPROM

• Lowest bit of I2C is used to indicate read/write

(0 is write, 1 is read)

• Selecting the memory location is always a

write operation (even when reading from it)

Selective Read in which we load

the address of the memory location

in the EEPROM where to read/write

afterwards (16 bits), see
https://www.onsemi.com/pub/Collateral/CAT24M01-D.PDF

https://www.onsemi.com/pub/Collateral/CAT24M01-D.PDF

Input Parameters provided by the Testbed22

 periodicity

• Contains the period in milliseconds at which new messages are provided

in EEPROM (signaled via a GPIO falling edge event, see later slides)

• A value of 0 for periodicity indicates aperiodic traffic

→ For aperiodic traffic, one can use the aperiodic_upper_bound and

aperiodic_lower_bound bounds

→ New messages will be provided at random times between these two bounds

→ Both bounds are in milliseconds

Multiple Patterns23

 The config_t structure contains an array of different

application input parameters (pattern_t struct)

• More than one pattern_t can be active at the same time,

depending on the competition category
→ With TB_NUMPATTERN = 8, we have up to p[0] … p[7]

• Category 1 will only use p[0]

→ Multipoint-to-point traffic between up to 8 sources and at most 1 destination node

→ p[0].traffic_pattern = 3

→ p[1].traffic_pattern=0 … p[7].traffic_pattern=0 (unused)

• Category 2 uses up to TB_NUMPATTERN patterns

→ Point-to-multipoint traffic between a fixed number (up to 8) source nodes

and a set of destinations (each source can talk to up to 8 destinations)

→ Each pattern p uses either traffic_pattern = 2 (point-to-multipoint) or

traffic_pattern = 0 (unused)

→ A destination receives messages from only one source node

Printing Helper Function24

 print_testbed_config

• The testbed.h file also provides a function to print the input

parameters injected by the testbed

• You can use this function during the first experiments to make sure that

your code works as expected

• Make sure to enable the logging of serial output in the testbed

(see later slide)

 Messages to be sent over the network are available

in an EEPROM connected via I2C bus

• CAT24M01 EEPROM (located at address 0x50 on the bus),

datasheet: https://www.onsemi.com/pub/Collateral/CAT24M01-D.PDF

• The I2C bus is shared between the testbed’s observer module

(Raspberry Pi 3) and the target node (TelosB replica)

• A pre-defined GPIO pin is used to signal that data is available

EEPROM Communication25

I2C bus

T
e
l
o
s
B

EEPROM

GPIO pin for signalling

that data is available

Disclaimer: EEPROMs have a limited number of write cycles.

In case you notice an abnormal behaviour, please inform us!

https://www.onsemi.com/pub/Collateral/CAT24M01-D.PDF

 Messages to be sent over the network are available

in an EEPROM connected via I2C bus

• A pre-defined GPIO pin is used to signal that data is available

→ The GPIO used is on PORT2 and on the pin specified by
EVENT_PIN in testbed.h

→ In the provided code example (and during the competition, unless differently
specified), EVENT_PIN=6, i.e., the pin used is P2.6 (GIO3)

→ Same EVENT_PIN on PORT2 is used for both source and destination nodes

EEPROM Communication26

 Signalling (source node)

• If the node is a source, it needs to observe the EVENT_PIN on PORT2

• Ideally interrupts are used to trigger a read operation

(minimizes power and latency)

→ Note that Contiki provides an ISR for this port by default, hence remove the
ISR from contiki/platform/sky/dev/button-sensor.c first

→ We provide an example code in the i2c-test.c

showing how to register an ISR

→ The use of Contiki and its events is optional!

EEPROM Communication27

Your process

here

 Signalling (source node)

• If the node is a source, it needs to observe the EVENT_PIN on PORT2

• This pin is configured to be an input, triggering an interrupt

on falling edges

EEPROM Communication28

Call __eeprom_isr

on a falling edge

Call __eeprom_isr

on a rising edge

 Signalling (destination node)

• If the node is a destination, it needs to actuate the EVENT_PIN on PORT2

• First configure the pin as output, then set to low

• Afterwards, the GPIO pin needs to be raised to indicate write operation,

and toggled back to zero once the write operation has completed

EEPROM Communication29

… EEPROM writing goes here …

 Signalling (destination node)

• If the node is a destination, it needs to actuate the EVENT_PIN on PORT2

• First configure the pin as output, then set to low

• Afterwards, the GPIO pin needs to be raised to indicate write operation,

and toggled back to zero once the write operation has completed

EEPROM Communication30

… EEPROM writing goes here …

 On the falling edge the testbed’s observer module (Raspberry Pi 3)

will try to read the EEPROM

 Make sure the I2C bus has been freed by this point!

 Latency measurement is carried out between falling edges

 The I2C bus is shared between the observer module

(testbed’s RPi3) and the sensor node (TelosB replica)

• I2C does not really support multi-master without arbitration

• We use a single GPIO pin on PORT2 (EVENT_PIN)

to indicate read or write operations

• Keep in mind that read and write operations take time!

→ Do not write more than once every 20ms to give

the observer module time to read the content

→You can also watch the I2C clock (SCL) for activity

to ensure data that has been read

→The EEPROM will not respond for 5ms after a successful write operation!

(check tWR in the EEPROM’s datasheet)

EEPROM Communication31

my2c_start()

blocks the bus and signals start

my2c_write()

writes one byte on the bus

EEPROM Communication
my2c_read(arg)

reads one byte, arg indicates last byte
(arg =FALSE → last byte)

my2c_stop()

releases the bus and signals stop

32

 Once a falling edge is detected on the source, the data

can be read and transmitted to the destination

 Once the destination receives the message, it actuates the

GPIO to high, reads the data, and lowers the GPIO

EEPROM Communication33

Note that, the rising edge on the GPIO of a source node is not necessarily

constant, as the EEPROM may skew the clock

Source can read new data from EEPROM

Destination has written data to EEPROM

34

Competition’s

Testbed Facility

Competition’s Testbed Facility35

 The testbed facility is available at:

https://iti-testbed.tugraz.at/

 Login credentials

• Each team will receive the login

credentials to access the testbed

facility via e-mail as soon as:

→ At least one team member has

registered to EWSN 2019

→ A signed scanned copy of the

terms and conditions for the use

of the competition’s testbed has

been sent to the organizers

→ One username and password

shared for the whole team

https://iti-testbed.tugraz.at/

Competition’s Testbed Facility36

 At a glance

• Home tab shows the list of all experiments of all teams

(completed, running, or queued for execution)

Currently running

Successfully completed

Aborted or failed

Visualize results

(anyone can see those!)

Higher priority job

(organizers only)

Log output enabled

(traces only seen by team)

Competition’s Testbed Facility37

 At a glance

• Home tab shows the list of all experiments of all teams

(completed, running, or queued for execution)

Currently running

Successfully completed

Aborted or failed

Visualize results

(anyone can see those!)

Higher priority job

(organizers only)

Log output enabled

(traces only seen by team)

Team 00 are the dependability competition organizers!

(we will sporadically run some test runs and sanity checks)

Firmware Upload38

• Contestants select one of multiple available

node layouts (i.e., different configurations or

sets of source and destination nodes)

• Contestants choose the characteristics of the traffic

generated by the testbed facility

→ Aperiodic or periodic traffic

→ Length in bytes of the data to be transmitted

provided in the EEPROM (in this example, 8 bytes)

• Contestants can choose in which category the

submitted firmware will be competing

Firmware Upload39

• Contestants can enable interference in the

surroundings of the nodes and specify its level
Note: this feature will be disabled during the

very first days of the preparation phase

• Contestants can capture serial output
Note: turning FTDI on/off severely affects the energy

consumption of the nodes and the accuracy of timing info!

• Contestants can select an experiment duration
Note: during the preparation phase, it will be limited to max. 480 sec

• Contestants can upload a single binary ihex file:

this will be uploaded to all nodes in the network

using a common MSP430 Bootstrap Loader

• Binary patching is enabled by default
(but can be disabled for testing purposes)

Testbed’s Scheduler40

 Jobs are typically executed between

18:00 and 8:00 CEST only!

• On the 28th of October, daylight saving time changes!

(testbed will then run between 18:00 and 08:00 CET)

• During weekends and (Austrian) holidays, experiments

can run anytime along the 24 hours

The scheduler is currently

active and processing jobs

The scheduler activity will

be resumed at 18:00

Amount of time required by

the jobs currently queued
Experiments can be queued anytime!

+16% compared to
previous edition!

Testbed’s Scheduler41

 Jobs are typically executed between

18:00 and 8:00 CEST only!

• On the 28th of October, daylight saving time changes!

(testbed will then run between 18:00 and 08:00 CET)

• During weekends and (Austrian) holidays, experiments

can run anytime along the 24 hours

 Why this limitation?

• During the experiments, a harsh RF environment is created by

making use of (among others) Raspberry Pi3 nodes to generate

a significant amount of Wi-Fi traffic

• When heavy Wi-Fi traffic is generated, the University’s Wi-Fi

infrastructure is severely affected any can be disrupted

• Therefore, we have agreed with TU Graz to carry out the

competition only outside the official working hours

+16% compared to
previous edition!

Testbed’s Scheduler42

 Jobs execution policy: round-robin

• Compared to FIFO scheduling, round-robin increases fairness in

the number of experiments executed per team in a given time

• The testbed executes jobs on a per-team basis

→ Scheduler iterates through the list of teams based

on the team number

→ In case a team is competing in both categories, up to two

experiments will be executed before iterating to the next

team (at most one for each category)

→ Once the job(s) of a team complete(s), the testbed executes

the next pending job for the next team number (if any)

→ If there is no job pending for a given team, the scheduler

will first iterate through all other teams before scheduling

a newly-pending job for that specific team

Layout of Nodes43

 For each competition category, different

node layouts are available

• Different configurations or sets of source and destination nodes

• Binary patched by the testbed when running a job

• Node layout can be specified when creating a job

→ Layout 1 is representative of a layout for the final evaluation

→ Layout 2 is a simple node layout with nodes reachable

within a single hop for initial tests

→ Layout "Empty Configuration" is intended to use with binary patching

disabled for testing purposes

 No data is generated on the EEPROM

Layout of Nodes44

 Category 1: Data collection for condition monitoring

• 207, 220, 212, 119, and 222

are source nodes

• 202 is the destination node

(These nodes are not necessarily in range)

• 101 and 102 are source nodes

• 100 is the destination node

(These nodes are all in reach within a single hop)

Layout of Nodes45

 Category 2: Dissemination of actuation commands

Three source nodes (200, 206, and 117) transmitting to several destination nodes

• 100 is the source node

• 101 and 102 are destination nodes

(These nodes are all in reach within a single hop)

Results of an Experiment46

 After the execution of an experiment, graphical

results can be checked (by anyone) by clicking

on the blue button on the right side

• Results displayed using Grafana

• Power consumption and GPIO

status is tracked for each node

• EEPROM messages sent and

received for each node

 The team owning a job can

also see the program log

Results of an Experiment47

 Grafana dashboards

• Overview of all the nodes

• Overview of EEPROM messages

• Overview of GPIO events

• Overview of individual nodes

• Overview of power consumption

Monitoring the GPIO

of multiple nodes at

the same time

Monitoring individual

GPIO pins
(for the numbering explanation

check the "GPIO pins" section)

Results of an Experiment48

 Grafana dashboards

• Overview of all the nodes

• Overview of EEPROM messages

• Overview of GPIO events

• Overview of individual nodes

• Overview of power consumption

Stacked energy consumption:

Shows the total energy consumed by all nodes in the testbed

Experiment state:

Shows if a sensor node is active (1) or not (0)

Results of an Experiment49

 Grafana dashboards

• Overview of all the nodes

• Overview of EEPROM messages

• Overview of GPIO events

• Overview of individual nodes

• Overview of power consumption

Individual statistics on voltage, current, power, and cumulative energy for all or specific nodes

Results of an Experiment50

 Grafana dashboards

• Overview of all the nodes

• Overview of EEPROM messages

• Overview of GPIO events

• Overview of individual nodes

• Overview of power consumption

GPIO pins (Information is encoded in a special way – for individual values, use "Overview of GPIO events")

The value is computed as follows:

gpio=0;

gpio=gpioRead(17);

gpio=(gpio<<1) | gpioRead(4);

gpio=(gpio<<1) | gpioRead(18);

gpio=(gpio<<1) | gpioRead(27);

gpio=(gpio<<1) | gpioRead(22);

gpio=(gpio<<1) | gpioRead(23);

gpio=(gpio<<1) | gpioRead(24);

gpio=(gpio<<1) | gpioRead(25); (See "GPIO pins" section for details)

Results of an Experiment51

 Grafana dashboards

• Overview of all the nodes

• Overview of EEPROM messages

• Overview of GPIO events

• Overview of individual nodes

• Overview of power consumption

Node status information (serves as a sanity check for both contestants and organizers)

The value is computed as follows:

control=0;

control=gpioRead(21); // GPIO 21 = TelosB has power? (1 = yes, 0 = no)

control=(control<<1) | gpioRead(20); // GPIO 20 = reset pin of TelosB node (1 = running, 0 = not running)

control=(control<<1) | gpioRead(16); // GPIO 16 = The GPIOs ADC0, ADC1, ADC2, and ADC3 are all configured

as input (0) or as output (1)

control=(control<<1) | gpioRead(12); // GPIO 12 = The GPIOs ADC7, GIO2, GIO3, and USERINT are all

configured as input (0) or as output (1)

See "GPIO pins" section for details

Results of an Experiment52

Count of the messages on each node

(displayed for each node selected here)

 Grafana dashboards

• Overview of all the nodes

• Overview of EEPROM messages

• Overview of GPIO events

• Overview of individual nodes

• Overview of power consumption

Results of an Experiment53

Histogram of the messages on each node

(displayed for each selected node)

 Grafana dashboards

• Overview of all the nodes

• Overview of EEPROM messages

• Overview of GPIO events

• Overview of individual nodes

• Overview of power consumption

Individual messages sent

and received by each node

Results of an Experiment54

 Grafana dashboards

• Overview of all the nodes

• Overview of EEPROM messages

• Overview of GPIO events

• Overview of individual nodes

• Overview of power consumption

Example: how to visualize latency of individual messages

(208 is the source, 216 is the destination)

Visualization in Grafana – FAQ 55

 Why is Grafana not displaying any point when I zoom in?

• Grafana uses second resolution for the zoom

• When zooming too much, the averaging may lead to a situation in

which Grafana uses the same timestamp as startpoint and endpoint

and cannot hence visualize a line

Visualization in Grafana – FAQ 56

 Can we export the data seen in Grafana?

• Yes, CSV files can be exported by

clicking on the title of the plot

• Click on the menu icon and select "Export CSV"

Testbed Location57

 Nodes are deployed in Inffeldgasse 16 (Graz, Austria)

• University offices, seminar rooms, and laboratories

(belonging to the Institute for Technical Informatics of TU Graz)

• 51 testbed nodes currently active over multiple floors

• Density of nodes varies across the building

Testbed Location58

 Nodes are deployed in Inffeldgasse 16 (Graz, Austria)

• University offices, seminar rooms, and laboratories

(belonging to the Institute for Technical Informatics of TU Graz)

• 51 testbed nodes currently active over multiple floors

• Density of nodes varies across the building

Testbed Hardware59

 The testbed allows contestants to program several

Maxfor/Advanticsys MTM-CM5000-MSP nodes

(replicas of TelosB/Tmote Sky nodes)

• With and without SMA antenna

• All powered via USB

• 10 kB of RAM

• Attached to D-Cube
(http://www.iti.tugraz.at/D-Cube)

http://www.iti.tugraz.at/D-Cube

Testbed Hardware: D-Cube60

EWSN’17 version EWSN’16 version

 More info: http://iti.tugraz.at/d-cube

EWSN’18 version

https://iti.tugraz.at/d-cube

Testbed Hardware: D-Cube61

This year’s prototype (EWSN’19)

 More info: http://iti.tugraz.at/d-cube

EWSN’18 version

• Same as the

2018 edition,

but with an

additional

EEPROM

• This allows to

read/write

variable size

payloads

https://iti.tugraz.at/d-cube

Testbed Hardware: D-Cube62

User Interface
Grafana

Time Series Database
InfluxDB

Observer
Module 2

Observer
Module 1

Observer
Module n...

Target
Node 2

Target
Node 1

Target
Node n

D-Cube

Underlying Testbed Infrastructure (Power + Reprogramming)

00011011 00000100 00100000 01000001
00010011 01111010 00001001 00101011
11001111 01000100 11001001 10001011
01011001 01000101 10011010 10001001
00011101 01111101 11000001 11111011
10000101 01101110 11110001 01001000
10111010 10001110 10011110 11000100
11000010 01100110 11000000 10000111
10100110 01001110 01111001 11000001

...

...

 Target nodes

→ Devices running the

code/system under test

→ D-Cube agnostic to HW

platform chosen as target

→ MTM-CM5000-MSP node

(TelosB replica - 10 kB RAM)

 Underlying infrastructure

→ Power + reprogramming of the target nodes

→ Allows to disable the UART interface

Testbed Hardware: D-Cube63

User Interface
Grafana

Time Series Database
InfluxDB

Observer
Module 2

Observer
Module 1

Observer
Module n...

Target
Node 2

Target
Node 1

Target
Node n

D-Cube

Underlying Testbed Infrastructure (Power + Reprogramming)

00011011 00000100 00100000 01000001
00010011 01111010 00001001 00101011
11001111 01000100 11001001 10001011
01011001 01000101 10011010 10001001
00011101 01111101 11000001 11111011
10000101 01101110 11110001 01001000
10111010 10001110 10011110 11000100
11000010 01100110 11000000 10000111
10100110 01001110 01111001 11000001

...

...

 Observer modules

→ Each module monitors exactly one target node

→ Raspberry Pi 3 + custom-made add-on card (ADC+GPS)

Testbed Hardware: D-Cube64

User Interface
Grafana

Time Series Database
InfluxDB

Observer
Module 2

Observer
Module 1

Observer
Module n...

Target
Node 2

Target
Node 1

Target
Node n

D-Cube

Underlying Testbed Infrastructure (Power + Reprogramming)

00011011 00000100 00100000 01000001
00010011 01111010 00001001 00101011
11001111 01000100 11001001 10001011
01011001 01000101 10011010 10001001
00011101 01111101 11000001 11111011
10000101 01101110 11110001 01001000
10111010 10001110 10011110 11000100
11000010 01100110 11000000 10000111
10100110 01001110 01111001 11000001

...

...

 Observers: latency profiling

→ GPS module to synchronize system clock
(NavSpark-GL: Arduino DevBoard with GPS/GLONASS)
http://navspark.mybigcommerce.com/navspark-gl-arduino-compatible-development-board-with-gps-glonass/

→ Ensures accurate time measurements

across the nodes in the testbed

http://navspark.mybigcommerce.com/navspark-gl-arduino-compatible-development-board-with-gps-glonass/

Testbed Hardware: D-Cube65

User Interface
Grafana

Time Series Database
InfluxDB

Observer
Module 2

Observer
Module 1

Observer
Module n...

Target
Node 2

Target
Node 1

Target
Node n

D-Cube

Underlying Testbed Infrastructure (Power + Reprogramming)

00011011 00000100 00100000 01000001
00010011 01111010 00001001 00101011
11001111 01000100 11001001 10001011
01011001 01000101 10011010 10001001
00011101 01111101 11000001 11111011
10000101 01101110 11110001 01001000
10111010 10001110 10011110 11000100
11000010 01100110 11000000 10000111
10100110 01001110 01111001 11000001

...

...

 Observers: power profiling

→ Simultaneous sampling ADC (TI LMP92064) read

via SPI @ 62.5 kHz using a real-time process

 Voltage channel: up to 10.82V with 2.82mV resolution

 Current channel: up to 150.59mA with 39.22μA resolution

Testbed Hardware: D-Cube66

User Interface
Grafana

Time Series Database
InfluxDB

Observer
Module 2

Observer
Module 1

Observer
Module n...

Target
Node 2

Target
Node 1

Target
Node n

D-Cube

Underlying Testbed Infrastructure (Power + Reprogramming)

00011011 00000100 00100000 01000001
00010011 01111010 00001001 00101011
11001111 01000100 11001001 10001011
01011001 01000101 10011010 10001001
00011101 01111101 11000001 11111011
10000101 01101110 11110001 01001000
10111010 10001110 10011110 11000100
11000010 01100110 11000000 10000111
10100110 01001110 01111001 11000001

...

...

 Observers: GPIO profiling

→ GPIO changes are monitored using the same

real-time process sampling the ADC

→ System clock accuracy is ensured by the GPS module

(NTP for nodes where GPS is unavailable)

Testbed Hardware: D-Cube67

User Interface
Grafana

Time Series Database
InfluxDB

Observer
Module 2

Observer
Module 1

Observer
Module n...

Target
Node 2

Target
Node 1

Target
Node n

D-Cube

Underlying Testbed Infrastructure (Power + Reprogramming)

00011011 00000100 00100000 01000001
00010011 01111010 00001001 00101011
11001111 01000100 11001001 10001011
01011001 01000101 10011010 10001001
00011101 01111101 11000001 11111011
10000101 01101110 11110001 01001000
10111010 10001110 10011110 11000100
11000010 01100110 11000000 10000111
10100110 01001110 01111001 11000001

...

...

 Time Series database

→ Collects and persistently

stores the data from all

observers

→ InfluxDB (open-source)

→ Nanosecond precision

timestamps

 User Interface

→ Acts as proxy to the

database and gives

real-time feedback

→ Grafana (open-source)

68

GPIO Pins

GPIO Pins69

 The testbed facility is connected to eight of the pins

available in the 10-pin and 6-pin expansion connector

GPIO Pins70

 The testbed facility is connected to eight of the pins

available in the 10-pin and 6-pin expansion connector

Example on how to

configure the pins of

the sensor node

GPIO Pins71

 The testbed facility is connected to eight of the pins

available in the 10-pin and 6-pin expansion connector

Sensor Node Grafana

ADC0 GPIO 17

ADC1 GPIO 4

ADC2/GIO1 GPIO 18

ADC3/GIO0 GPIO 27

ADC7/SVSin GPIO 22

GIO2 GPIO 23

GIO3/SVSout GPIO 24

DAC0/ADC6 GPIO 25

Conversion table of

the GPIO naming

scheme in Grafana

Numbering of GPIO Pins in Grafana72

 The GPIO numbers in Grafana correspond to the GPIO

pin number to which the sensor node testbed is attached

on D-Cube’s Observer (Raspberry Pi3)

ADC7/SVSin GPIO 22

(Pin 22 on

Raspberry Pi3)

Numbering of GPIO Pins in Grafana73

 The GPIO numbers in Grafana correspond to the GPIO

pin number to which the sensor node testbed is attached

on D-Cube’s Observer (Raspberry Pi3)

Sensor Node Grafana

ADC0 GPIO 17

ADC1 GPIO 4

ADC2/GIO1 GPIO 18

Sensor Node Grafana

GIO3/SVSout GPIO 24

DAC0/ADC6 GPIO 25

Sensor Node Grafana

ADC3/GIO0 GPIO 27

ADC7/SVSin GPIO 22

GIO2 GPIO 23

GPIO Pins in Grafana74

 In the “Overview of individual nodes” tab, the displayed

“GPIO pins” numbers in Grafana is derived with the

following mapping:

Mapping in Grafana

 Example: “GPIO pins” value of 18

• 18 = 0001 0010 in binary

• Using Grafana’s mapping:

• ADC0=0; ADC1=0;

ADC2=0; ADC3=1

• SVSin=0; GIO2=0;

GIO3=1; ADC6=0

75

Experiments’

Evaluation

Evaluation of Experiments76

 In the first days of the preparation phase,

this feature will be disabled

• We first let all teams

familiarize with the

testbed facility

• Detailed evaluation

results on reliability,

latency, and energy

will be displayed

after a few days

• Meanwhile, one can

see the performance

for each run using

Grafana

77

Tentative

Agenda

Tentative Agenda78

 Preparation phase

(08.10.2018 – 20.12.2018)

1. Initial preparation phase

08.10.2018 – 24.10.2018

→ Teams get access to the competition infrastructure

→ Teams get acquainted with the new competition settings

(binary patching and data transmission/reception via EEPROM)

→ No harsh RF environment yet

2. Second preparation phase

25.10.2018 – 11.11.2018

→ Harsh RF environment can be generated

→ Leaderboard and detailed evaluations (details follow)

3. Third preparation phase

12.11.2018 – 20.12.2018

→ Additional testbed layouts (node placements) available

79

Communication

with the Organizers

Official Blog80

 The organizers have created a blog to keep contestants

up to date about the logistics and any important news

• Please check

it regularly!

• Answers to

FAQs will be

posted here

Slack Group81

 The organizers have

also created a slack

group to let contestants

easily post questions

and interact with the

organizers as well as

with the other teams

 To join slack, click here

https://join.slack.com/t/dependability/shared_invite/enQtNDQ4OTgxNzQ3MDMwLWM4MjJkMDJiZDdkNTA1NTFlMjUxOGIyNGUwYzBlY2VmMTIzNzVmMzc4YWM2MTA1ZDBiNWFkODgxYjMwMWMzYTY

Contacts82

 Carlo Alberto Boano

• E-mail: cboano@tugraz.at

• Tel.: +43 316 873 6413

 Markus Schuss

• E-mail: markus.schuss@tugraz.at

• Tel.: +43 316 873 6403

mailto:cboano@tugraz.at
mailto:markus.schuss@tugraz.at

