

Competition: Using Enhanced OF∂COIN to Monitor Multiple Concurrent Events under Adverse Conditions

Xiaoyuan Ma^{1,3}, **Peilin Zhang**⁴, Weisheng Tang^{1,3}, Xin Li^{1,2}, Wangji He^{1,2,3}, Fuping Zhang¹, Jianming Wei¹, Oliver Theel⁴

1. Shanghai Advanced Research Institute, Chinese Academy of Sciences, China

- 2. ShanghaiTech University, School of Information Science & Technology, China
- 3. University of Chinese Academy of Sciences, China
- 4. Carl von Ossietzky University of Oldenburg, Germany

What is it about?

Performance evaluation and comparison of IoT communication protocols in **harsh** RF environments

- Performance metrics
 - Reliability
 - Latency
 - Energy consumption
- Multiple concurrent events
 - One-to-one
 - One-to-many
 - Many-to-one

Challenges

- Multiple (concurrent) events
- Adverse conditions (harsh RF environments)
- Large-scale deployment

EWSN '18 Using Enhanced OF∂COIN to Monitor Multiple Concurrent Events under Adverse Conditions 15 Feb 2017 3 / 11

Enhanced OF∂COIN

Derived from previous year's $OF\partial COIN^1$

- Concurrent transmissions
 - ► Constructive interference
 - ► Capture effect
- Opportunistic multichannel hopping²

¹X. Ma et al. "Using OFPCOIN under interference". In: Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks (EWSN '17), Dependability Competition. 2017.

²P. Zhang, O. Landsiedel, and O. Theel. "MOR: Multichannel opportunistic routing for wireless sensor networks". In: *Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks (EWSN '17)*. 2017, pp. 36–47.

Implementation

Contiki OS

- TelosB sky mote
- ▶ Flocklab³ + Jamlab⁴
- ► D-Cube⁵

³R. Lim et al. "Flocklab: A testbed for distributed, synchronized tracing and profiling of wireless embedded systems". In: *Proceedings of the 12th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN '13)*. 2013, pp. 153–165.

⁴C. A. Boano et al. "Jamlab: Augmenting sensornet testbeds with realistic and controlled interference generation". In: *Proceedings of the 10th International Conference on Information Processing in Sensor Networks (IPSN* 2011). 2011.

⁵M. Schuß et al. "A Competition to Push the Dependability of Low-Power Wireless Protocols to the Edge". In: *Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks (EWSN '17)*. 2017, pp. 54–65.

Frame Structure

► Identical part ← Constructive interference

- Different part \leftarrow Capture effect
- Decision making of re-transmissions

Octets:	4	1	1	2	1	3	1	1	2
	Preamble Sequence	Start of Frame Delimiter	Frame Length	Public Information	Identical Part Checksum	Private Information	Topology Information	Different Part Checksum	Footer/ CRC
	Identical Part					Different Part			

Timeline

Example of a one-to-one scenario

Network Coordination

One-to-one scenario

EWSN '18 Using Enhanced OF∂COIN to Monitor Multiple Concurrent Events under Adverse Conditions 15 Feb 2017 8 / 11

Network Coordination

▶ One-to-one scenario x2

Results

Performance in different scenarios

- ▶ Reliability: 88.89%
- ▶ Latency: 332.49 ms
- Energy consumption: 10579 J

Acknowledgments

- Carlo Alberto Boano and Markus Schu
 ß, Graz University of Technology, Austria
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, China
- DFG-GRK 1765: System Correctness under Adverse Conditions (SCARE), Germany

Many Thanks! Vielen Dank! 非常感谢!

Any Questions?

