Competition: Using Enhanced OF\partial\text{COIN} to Monitor Multiple Concurrent Events under Adverse Conditions

Xiaoyuan Ma1,3, Peilin Zhang4, Weisheng Tang1,3, Xin Li1,2, Wangji He1,2,3, Fuping Zhang1, Jianming Wei1, Oliver Theel4

1. Shanghai Advanced Research Institute, Chinese Academy of Sciences, China
2. ShanghaiTech University, School of Information Science & Technology, China
3. University of Chinese Academy of Sciences, China
4. Carl von Ossietzky University of Oldenburg, Germany
What is it about?
Performance evaluation and comparison of IoT communication protocols in **harsh** RF environments

- **Performance metrics**
 - Reliability
 - Latency
 - Energy consumption

- **Multiple concurrent events**
 - One-to-one
 - One-to-many
 - Many-to-one
Challenges

- Multiple (concurrent) events
- Adverse conditions (harsh RF environments)
- Large-scale deployment
Enhanced OF∂COIN
Derived from previous year’s OF∂COIN1

- Concurrent transmissions
 - Constructive interference
 - Capture effect
- Opportunistic multichannel hopping2

Implementation

- Contiki OS
- TelosB sky mote
- Flocklab\(^3\) + Jamlab\(^4\)
- D-Cube\(^5\)

Frame Structure

- Identical part ← Constructive interference
- Different part ← Capture effect
- Decision making of re-transmissions

<table>
<thead>
<tr>
<th>Octets:</th>
<th>4</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble Sequence</td>
<td>Start of Frame Delimiter</td>
<td>Frame Length</td>
<td>Public Information</td>
<td>Identical Part Checksum</td>
<td>Private Information</td>
<td>Topology Information</td>
<td>Different Part Checksum</td>
<td>Footer/ CRC</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Identical Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Different Part</td>
</tr>
</tbody>
</table>
Example of a one-to-one scenario
Network Coordination

One-to-one scenario

- **Destination nodes**
- **Source nodes**
- **Active Relay Nodes**
- **Silent Relay Nodes**
- **Data Flow**
Network Coordination

One-to-one scenario x2
Results

Performance in different scenarios

- Reliability: 88.89%
- Latency: 332.49 ms
- Energy consumption: 10579 J
Acknowledgments

- Carlo Alberto Boano and Markus Schuß, Graz University of Technology, Austria
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, China
- DFG-GRK 1765: System Correctness under Adverse Conditions (SCARE), Germany
Many Thanks!
Vielen Dank!
非常感谢!

Any Questions?