
u www.iti.tugraz.at

Markus Schuß and Carlo Alberto Boano
Institut für Technische Informatik

Graz University of Technology, Austria

How to Use the D-Cube

Benchmarking Facility

Quick Tutorial, rev. 1

28.11.2019

1

Creating a Protocol to be Benchmarked2

 Use your credentials to login into D-Cube at

https://iti-testbed.tugraz.at/auth/login

 Create a protocol under

“Protocols→Manage”

• Specify your protocol’s name

• Add an optional link (e.g., to your institution’s Website, to the GIT

repository containing the source code of your protocol, or to the PDF

of a scientific publication describing the protocol to be tested)

• Add a short description about

the protocol to be tested

• Select the benchmark suite

on which this protocol should

be tested. One protocol can

be associated to a specific

benchmark suite only!

https://iti-testbed.tugraz.at/auth/login

Creating a Protocol to be Benchmarked3

 Available benchmark suites

• The two Tmote Sky node suites resemble the two categories of

the EWSN 2019 dependability competition (data collection and

dissemination in a multi-hop network)

• The nRF52 suite resembles a timely data collection in a multi-hop

network (as specified for the EWSN 2020 dependability competition)

• More information about the benchmark suites is available here

http://ewsn2019.thss.tsinghua.edu.cn/competition-scenario.html
http://ewsn2020.conf.citi-lab.fr/competition.html
https://iti-testbed.tugraz.at/wiki/index.php/Overview_of_Available_Suites

Creating a Protocol to be Benchmarked4

 SkyDC_1 (Tmote Sky Data Collection v1)

SkyDD_1 (Tmote Sky Data Dissemination v1)

• Same scenarios as EWSN Dependability Competition 2019

• HW platform: TelosB replica / Tmote Sky

• Performance metrics:

1. Reliability of transmissions, i.e., the number of messages correctly

reported to the intended destination(s)

2. Average end-to-end latency in communicating each message to the

intended destination(s)

3. Average energy consumption on all nodes in the network (*)

(*) During the first 60 seconds no data is generated and the energy consumption is not

measured to allow a full bootstrap of the network

• Application scenario:

− Up to 8 source nodes communicating to a single destination (DC) or to a

specific set of destinations (DD) in a multi-hop network

− Source nodes generate raw sensor values of different lengths

− No maximum per-message delay bound and out-of-order delivery possible

− In DD, a destination cannot act as a source at the same time

Creating a Protocol to be Benchmarked5

 nRFDC_1 (nRF52840 Timely Data Collection v1)

• HW platform: nRF52840-DK

• Performance metrics:

1. Reliability of transmissions, i.e., the number of messages correctly

reported to each intended destination

2. Average energy consumption on all nodes in the network (*)

(*) During the first 60 seconds no data is generated and the energy consumption is not

measured to allow a full bootstrap of the network

• Application scenario:

− Up to 48 source nodes generate raw sensor values of different lengths,

which should be communicated to the same destination

− The destination may be located several hops away from a source node,

even when making use of the coded PHY layers available on the nRF52

− The messages should be forwarded to the intended destination as

efficiently as possible within a maximum per-message delay bound ∂

(i.e., the end-to-end delay of every message from its generation to its

reception at the destination should be lower than ∂)

− If a message has been received with an end-to-end delay greater than ∂,

it is considered to be lost

Start Benchmarking a Protocol6

 Create Job

• Select the protocol you created

• Give a name to this job and a

short description (e.g., testing

protocol with parameter X=30)

• Select a job duration in seconds
Note: this is currently limited to 600s!

• Specify whether to log the serial

output from all nodes
Note: turning FTDI on/off severely

affects the energy consumption of

nodes & the accuracy of timing info!

• Specify whether to use binary

patching (i.e., let the testbed

inject traffic accordingly)

Start Benchmarking a Protocol7

 Create Job

• Select the node placement

(different node layouts are

available to generalize results)

• Select the traffic load

(periodic, aperiodic)

• Select whether radio interference

should be generated

− Select the rate at which D-Cube’s

observers generate Wi-Fi traffic

− Jamming Type 1:

only on a single frequency

− Jamming Type 2:

on multiple frequencies (mild)

− Jamming Type 3:

on multiple frequencies (stronger)

• Select whether applying a custom patch (through XML file)

• Upload a single binary ihex file to be flashed on all network nodes

 Standard Binary Patching

 Uses the testbed’s XML

 All values are always

overwritten (0 if not used)

 Custom Binary Patching

 User-provided XML

(see Slide 14 for details)

 If not specified in the

“Overrides JSON” field,

existing value remains

 For more info, see “Binary Patching” section later on

8 Binary Patching Differences

Start Benchmarking a Protocol9

 Flags and icons

• Home tab shows the list of all experiments of all users

(completed, running, or queued for execution)

Currently running

Successfully completed

Aborted or failed

Visualize results in Grafana

Higher priority job

(testbed maintainers only)

Log output enabled

Visualize detailed results

Binary patching enabled

Custom patch added

Visible only in the per-group

Sky or Nordic queue

10

Testbed’s

Scheduler

Testbed’s Scheduler11

 Jobs are typically executed between

20:00 and 6:00 CET/CEST only!

• During weekends and Austrian public holidays,

experiments are run along the 24 hours

The scheduler is currently

active and processing jobs

The scheduler activity will

be resumed at 20:00

Amount of time

required by the jobs

currently queued

Experiments can be queued anytime!

Testbed’s Scheduler12

 Jobs are typically executed between

20:00 and 6:00 CET/CEST only!

• During weekends and Austrian public holidays,

experiments are run along the 24 hours

 Why this limitation?

• During the experiments, a harsh RF environment is created by

making use of (among others) Raspberry Pi3 nodes to generate

a significant amount of Wi-Fi traffic

• When heavy Wi-Fi traffic is generated, the University’s Wi-Fi

infrastructure is severely affected any can be disrupted

• Therefore, we have agreed with TU Graz to carry out the

benchmarking activities only outside the official working hours

Testbed’s Scheduler13

 Jobs execution policy: round-robin

• Increases fairness in the number of experiments executed

per user in a given time

• The testbed executes jobs on a per-user and per-suite basis

→ Scheduler iterates through the list of users

→ For each user, it executes one job per benchmark suite (if any)

→ If no job is scheduled, the testbed carries out the perpetual

benchmarking of consolidated protocols

• Maintenance jobs and jobs scheduled by TU Graz employees

and its affiliates may have priority over other jobs

14

Binary

Patching

Binary Patching15

 D-Cube has the ability, to directly inject a number of input

parameters into the firmware under test

• More information available on our CPSBench paper

 The testbed injects the following input parameters:

• Node ID (the ID used in the Node addresses section)

• Traffic pattern (e.g., point-to-point traffic, multipoint-to-point traffic, …)

• Node addresses of source and destination nodes

• Traffic load

→ Message length and location within the EEPROM

→ Periodicity of messages (e.g., periodic, aperiodic, …)

→ The deadline for messages δ after which it counts as missed

Note that you can disable binary patching when

queueing your experiment for testing purposes

http://www.carloalbertoboano.com/documents/schuss18benchmark.pdf

Binary Patching16

 Contestants need to use a pre-defined configuration struct

• Provided in the testbed.h helper file

 Each benchmark suite has its own struct that can be

downloaded at https://iti-testbed.tugraz.at/wiki/index.php/Overview_of_Available_Suites

 An example on how this pre-defined configuration struct can

be used is available here and contains:

• testbed.h → Helper file containing the configuration struct and

some helper functions to print the values injected by the testbed

• custom.h & custom.xml → Examples for custom binary patching

• Makefile → Contains an example of how to configure the GCC

linker’s LDFLAGS correctly in the ???? for binary patching

• Flask_placement.xml → Contains an example of how to configure

Segger Embedded Studios linker’s correctly in the ???? for binary

patching

https://iti-testbed.tugraz.at/wiki/index.php/Overview_of_Available_Suites
https://iti-testbed.tugraz.at/wiki/images/d/db/NRFDC_1.zip

Binary Patching17

 Contestants need to use a pre-defined configuration struct

• Provided in the testbed.h helper file

 Each benchmark suite has its own struct that can be

downloaded at https://iti-testbed.tugraz.at/wiki/index.php/Overview_of_Available_Suites

 An example on how this pre-defined configuration struct can

be used is available here and contains:

• main.c → Example application built using Nordic’s SDK (version 16.0)

→ How to print values passed by the testbed (print_testbed_config)

→ Read and write data to EEPROM using I2C

→ Configure the GPIO pins and an interrupt service routine

https://iti-testbed.tugraz.at/wiki/index.php/Overview_of_Available_Suites
https://iti-testbed.tugraz.at/wiki/images/d/db/NRFDC_1.zip

 Your firmware application needs to include a provided
header file (testbed.h), which contains a well-known

definition of the application’s input parameters

 The PRINTF macro must be defined beforehand!

 In order for the patching to work, these application input

parameters need to be linked into a well-known address
(0x99000) via the Makefile / flash_placement.xml

Binary Patching18

 Your firmware application needs to contain an instance of
the config_t structure (cfg in the example below)

• cfg enables the testbed to change several settings such

as traffic pattern and traffic load before execution

• This avoids hardcoded values in your firmware

Binary Patching

Ensures the compiler does not remove or “optimize” the variable

The config_t type is defined in testbed.h

The attribute tells the MSP430 GCC to put the variable
into a new section called testbedConfigSection in

the resulting elf file (project_name.sky in Contiki)

19

 The config_t structure contains an array of different

application input parameters (pattern_t struct)

 The pattern_t struct contains information about

the delay bounds, as well as the traffic pattern and load:
• Traffic pattern: traffic_pattern, source_id[], destination_id[]

• Traffic load: msg_length, msg_offsetH, msg_offsetL,

periodicity, aperiodic_upper_bound,

aperiodic_lower_bound

Input Parameters provided by the Testbed20

 traffic_pattern embeds info about the traffic pattern

• Point-to-point (1), point-to-multipoint (2), multipoint-to-point (3),

and multipoint-to-multipoint (4)

• traffic_pattern is 0 if unused

Input Parameters provided by the Testbed21

 source_id[TB_NUMNODES] & destination_id[TB_NUMNODES]

• Embed info about the address of source and destination nodes

• Each node is identified with an 8-bit unsigned short address

→ 8-bit unsigned short value (e.g., 100, 103, 200, …)

Input Parameters provided by the Testbed22

TB_NUMNODES=8

 source_id[TB_NUMNODES] & destination_id[TB_NUMNODES]

• Embed info about the address of source and destination nodes

• Each node is identified with an 8-bit unsigned short address

→ 8-bit unsigned short value (e.g., 100, 103, 200, …)

→ We are using the node_id which is part of our config_t struct

→ Do not rely on silicone features such as the MAC address or other UIDs as the

NRF52840DKs may be replaced over time

Input Parameters provided by the Testbed23

 traffic_pattern

• 0: indicates that this pattern is unused and can be ignored

• 1: only the source_id[0] and destination_id[0] are used

• 2: the source_id[0] and all destination_id[x]!=0 are used

(x = 0 … TB_NUMNODES-1)

• 3: all source_id[x]!=0 and the destination_id[0] and are used

• 4: all source_id[x]!=0 and destination_id[x]!=0 are used

Input Parameters provided by the Testbed24

Input Parameters provided by the Testbed25

 msg_length

• Number of bytes to be written and read from EEPROM

(whenever an a falling edge occurs, see later slides)

• Messages will be at most 64 bytes

Input Parameters provided by the Testbed26

 msg_offsetH / msg_offsetL

• The high and low byte of the offset address in the EEPROM

Selective Read in which we load

the address of the memory location

in the EEPROM where to read/write

afterwards (16 bits), see
https://www.onsemi.com/pub/Collateral/CAT24M01-D.PDF

• 0x50 is the 7-bit device address of EEPROM

• Selecting the memory location is always a

write operation (even when reading from it)

https://www.onsemi.com/pub/Collateral/CAT24M01-D.PDF

Input Parameters provided by the Testbed27

 periodicity

• Contains the period in milliseconds at which new messages are provided

in EEPROM (signaled via a GPIO falling edge event, see later slides)

• A value of 0 for periodicity indicates aperiodic traffic

→ For aperiodic traffic, one can use the aperiodic_upper_bound and

aperiodic_lower_bound bounds

→ New messages will be provided at random times between these two bounds

→ Both bounds are in milliseconds

Input Parameters provided by the Testbed28

 delta

• Contains the deadline in milliseconds after which a new message is

considered missed, even if it was to be delivered afterwards

• A value of 0 for delta indicates that no such deadline exists

• delta is only available in the nRFDC_1 benchmark suite

Multiple Patterns29

 The config_t structure contains an array of different

application input parameters (pattern_t struct)

• More than one pattern_t can be active at the same time,

depending on the benchmark suite
→ With TB_NUMPATTERN = 8, we have up to p[0] … p[7]

• The node_id is shared across all pattern_t

→ node_id is only in the nRFDC_1 benchmark suite

Printing Helper Function30

 print_testbed_config

• The testbed.h file also provides a function to print the input

parameters injected by the testbed

• You can use this function during the first experiments to make sure that

your code works as expected

• Make sure to enable the logging of serial output in the testbed

(see later slide)

 Messages to be sent over the network are available

in an EEPROM connected via I2C bus

• MR44V100A FeRAM (“EEPROM”) (located at address 0x50 on the bus),

datasheet: http://www.lapis-semi.com/en/data/datasheet-file_db/Memory/FEDR44V100A-01.pdf

• The I2C bus is shared between the testbed’s observer module

(Raspberry Pi 3) and the target node (Tmote Sky or nRF52840)

• A pre-defined GPIO pin is used to signal that data is available

EEPROM Communication31

I2C bus

T
e
lo
s
B

EEPROM

GPIO pin for signalling

that data is available

http://www.lapis-semi.com/en/data/datasheet-file_db/Memory/FEDR44V100A-01.pdf

 Messages to be sent over the network are available

in an EEPROM connected via I2C bus

• In most benchmark suites, no messages are generated in the

first 60 seconds (setup time)

→ Allows routing-based solutions to establish trees and discover parents

→ Energy consumed during this time is not considered for the final metric

→ The initial setup time is not necessarily interference-free

• A pre-defined GPIO pin is used to signal that data is available

→ The GPIO used corresponds to Pin 24 n the Rapsberry Pi

e.g. Pin P2.6 (GIO3) on a TelosB Sky or Pin P1.02 (D1) on a nRF52840DK

→ Same Pin is used for both source and destination nodes

EEPROM Communication32

 On the falling edge the testbed’s observer module (Raspberry Pi 3)

will try to read the EEPROM

 Make sure the I2C bus has been freed by this point!

 Latency measurement is carried out between falling edges

 The I2C bus is shared between the observer module

(testbed’s RPi3) and the target node (Tmote Sky / nRF52840)

• I2C does not really support multi-master without arbitration

• We use a single GPIO pin (RPI Pin 24) to indicate read or write operations

• Keep in mind that read and write operations take time!

→ Do not write more than once every 20ms to give

the observer module time to read the content

→You can also watch the I2C clock (SCL) for activity

to ensure data that has been read

EEPROM Communication37

 Once a falling edge is detected on the source, the data

can be read and transmitted to the destination

 Once the destination receives the message, it actuates the

GPIO to high, reads the data, and lowers the GPIO

EEPROM Communication39

Note that, the rising edge on the GPIO of a source node is not necessarily

constant, as the EEPROM may skew the clock

Source can read new data from EEPROM

Destination has written data to EEPROM

Layout of Nodes40

 For each benchmark suite, different node layouts

are available

• Different configurations or sets of source and destination nodes

• Binary patched by the testbed when running a job

• Node layout can be specified when creating a job

• For most Benchmarks

→ Layout 1 is average (typically multi-hop) node placement

→ Layout 2 is a simple node layout with nodes reachable

within a single hop for initial tests

→ Layout "Empty Configuration" is intended to use with binary patching

disabled for testing purposes

 No data is generated on the EEPROM

Layout of Nodes41

 How to interpret the available node layouts

• 207, 220, 212, 119, and 222

are source nodes

• 202 is the destination node

(These nodes are not necessarily in range)

Three source nodes (200, 206, and 117)

transmitting to several destination nodes
(These nodes are not necessarily in range)

42

Hardware

Details
(nRF52840DK)

GPIO Pins43

 The testbed facility is connected to eight of the pins

available in the Arduino-compatible connectors

GPIO Pins44

 The testbed facility is connected to eight of the pins

available in the Arduino-compatible connectors

GPIO Pins45

 The testbed facility is connected to eight of the pins

available in the Arduino-compatible connectors

Sensor Node Grafana

P1.01/D0 GPIO 17

P1.02/D1 GPIO 4

P1.03/D2 GPIO 18

P1.04/D3 GPIO 27

P1.05/D4 GPIO 22

P1.06/D5 GPIO 23

P1.07/D6 GPIO 24

P1.08/D7 GPIO 25

I2C Pins46

 The EEPROM is connected to two of the pins

available in the Arduino-compatible connectors

I2C Pins47

 The EEPROM is connected to two of the pins

available in the Arduino-compatible connectors

Sensor Node I2C

P0.03/A0 SCL

P0.04/A1 SDA

Numbering of GPIO Pins in Grafana48

 The GPIO numbers in Grafana correspond to the GPIO

pin number to which the sensor node testbed is attached

on D-Cube’s Observer (Raspberry Pi3)

P1.05/D4 GPIO 22

(Pin 22 on

Raspberry Pi3)

Numbering of GPIO Pins in Grafana49

 The GPIO numbers in Grafana correspond to the GPIO

pin number to which the sensor node testbed is attached

on D-Cube’s Observer (Raspberry Pi3)

Sensor Node Grafana

P1.01/D0 GPIO 17

P1.02/D1 GPIO 4

P1.03/D2 GPIO 18

Sensor Node Grafana

P1.07/D6 GPIO 24

P1.08/D7 GPIO 25

Sensor Node Grafana

P1.04/D3 GPIO 27

P1.05/D4 GPIO 22

P1.06/D5 GPIO 23

GPIO Pins in Grafana50

 In the “Overview of individual nodes” tab, the displayed

“GPIO pins” numbers in Grafana are derived with the

following mapping:

Mapping in Grafana

 Example: “GPIO pins” value of 18

• 18 = 0001 0010 in binary

• Using Grafana’s mapping:

• P1.01=0; P1.02=1;

P1.03=0; P1.04=0;

• P1.05=1; P1.06=0;

P1.07=0; P1.08=0;

51

Hardware

Details
TelosB Sky

GPIO Pins52

 The testbed facility is connected to eight of the pins

available in the 10-pin and 6-pin expansion connector

GPIO Pins53

 The testbed facility is connected to eight of the pins

available in the 10-pin and 6-pin expansion connector

Example on how to

configure the pins of

the sensor node

GPIO Pins54

 The testbed facility is connected to eight of the pins

available in the 10-pin and 6-pin expansion connector

Sensor Node Grafana

ADC0 GPIO 17

ADC1 GPIO 4

ADC2/GIO1 GPIO 18

ADC3/GIO0 GPIO 27

ADC7/SVSin GPIO 22

GIO2 GPIO 23

GIO3/SVSout GPIO 24

DAC0/ADC6 GPIO 25

Conversion table of

the GPIO naming

scheme in Grafana

Numbering of GPIO Pins in Grafana55

 The GPIO numbers in Grafana correspond to the GPIO

pin number to which the sensor node testbed is attached

on D-Cube’s Observer (Raspberry Pi3)

ADC7/SVSin GPIO 22

(Pin 22 on

Raspberry Pi3)

Numbering of GPIO Pins in Grafana56

 The GPIO numbers in Grafana correspond to the GPIO

pin number to which the sensor node testbed is attached

on D-Cube’s Observer (Raspberry Pi3)

Sensor Node Grafana

ADC0 GPIO 17

ADC1 GPIO 4

ADC2/GIO1 GPIO 18

Sensor Node Grafana

GIO3/SVSout GPIO 24

DAC0/ADC6 GPIO 25

Sensor Node Grafana

ADC3/GIO0 GPIO 27

ADC7/SVSin GPIO 22

GIO2 GPIO 23

GPIO Pins in Grafana57

 In the “Overview of individual nodes” tab, the displayed

“GPIO pins” numbers in Grafana are derived with the

following mapping:

Mapping in Grafana

 Example: “GPIO pins” value of 18

• 18 = 0001 0010 in binary

• Using Grafana’s mapping:

• ADC0=0; ADC1=0;

ADC2=0; ADC3=1

• SVSin=0; GIO2=0;

GIO3=1; ADC6=0

Contact58

 dcube@iti.tugraz.at

 D-Cube team

 Markus Schuss

• E-mail: markus.schuss@tugraz.at

• Tel.: +43 316 873 6403

 Carlo Alberto Boano

• E-mail: cboano@tugraz.at

• Tel.: +43 316 873 6413

mailto:dcube@iti.tugraz.at
mailto:markus.schuss@tugraz.at
mailto:cboano@tugraz.at

